"The question is not what you look at, but what you see."
—Howard Brandston, Learning to See: A Matter of Light

ASSIGNMENT SUMMARY
This exercise is intended to encourage you to look at the built environment critically and improve your ability to “see light”. It should enable you to develop a feel for how architecture can be rendered and revealed with light.

LEARNING OBJECTIVES

- Classify the light in lighted environments using Richard Kelly’s poetic terms of ambient luminescence, focal glow, and play of brilliants, and/or with the more architectural lighting embodiments of ambient, decorative, accent, task, and kinetic.
- Appraise the quality of lighted environments.
- Recognize shade, shadow, highlight, gradients, textures, rhythm, pattern, and other luminous characteristics of lighted environments.
- Synthesize the visual experience into words and terms common in architectural lighting.

READING
Read the article “How to Communicate Light” that is posted on the Canvas website. This article is about the role and use of different mediums for communicating the role of light in architecture. Because light is frequently difficult for clients to understand, when a lighting professional is effective at communicating intended lighting effects, he or she becomes an especially valued part of the project team.

The reading summarizes five methods of communicating light. This assignment focuses on just two of those five forms of communication: images and words.

IMAGE COLLECTING
The images may be photographs you have taken or images you find online or in magazines. I especially suggest that you review the websites of lighting design firms since they use their websites as marketing tools to showcase their work. The IALD website includes a directory of IALD lighting designers [LINK]; use that directory to locate lighting design firms.

Provide a citation for each of your selected images. One preferred format for image citations is that of the American Psychological Association (APA). For guidance on the APA citation format for images, refer to [LINK].

As stated in the reading, images can be helpful in showing a client the intended effect of the lighting. For example, what does a flat wash versus grazing effect look like on brick? Include
brief annotations to convey the lighting concepts employed in the image; use professional language and precise terminology.

The critiques of the gathered images are your chance to convey what you perceive to be successes or failures. This is the opportunity to express your understanding of the lighting effects through verbal communication. Critiques must be concise and well written. Be prepared to discuss your images and critiques in class.

Image #1
Interior public space after dark: The image must be of a public space. It can be intimate or crowded, large or small, famous or unknown, but it must be an interior space without daylight.

Image #2
Façade Lighting: The image must be of a building façade at night. (Note: Media facades are visually seductive and printed in magazines all the time. However, I suggest finding a more traditionally illuminated façade to add to your collection.)

Image #3
Fine Art Museum Interior: The image must be of an art museum gallery displaying paintings, sculpture, rare-books, valuable artifacts, or similar types of art objects.

When you write your annotated captions, really focus on vocabulary. Choose words that are technically correct for the situation. Write crisply. The lighting design you critique could be good or not good; you must decide. Don't assume the lighting is good or bad until you study it.

EXAMPLES OF ANNOTATED IMAGES
The below examples are from the IES Lighting Handbook, 10th edition. They illustrate one annotation style, based on relating a circled number in the image to the same circled number in the caption. These examples do not contain critiques of the type that you are being asked to do!

![Figure 37.4](image-url)
Figure 27.1 | Atria
This daylighted atrium contains a lot of volume which can pose significant challenge to meeting illuminance criteria, lighting power densities, and overall spatial luminances. Three lighting approaches are used throughout the atrium: ambient, task, and accent. Ambient lighting contributes much of the overall illuminance at floor level and is achieved primarily with indirect lighting techniques. Bulkheads are illuminated with 4” diameter linear lensed tubular luminaires using lamps of 85 CRI and 3500 K CCT. Luminaires are cantilevered off the bulkhead about 8” with optics oriented up and onto the bulkhead (see image above). Fluorescent cove lighting is used to light the ceilings at the circulation zones on each floor. Fluorescent slot lights emphasize some art walls.
Display cases and reception desk (not shown) exhibit internal task lighting.
39W/PAR20/CMH 30° beam flood lamps fitted with 55° spread lenses and UV filters accent artwork and.

Images www.jmaconochie.com

Figure 36.1 | Slanted Baggage Carousel
1 Linear fluorescent cove lighting produces general lighting. 2 Slots are added to light the main runs of the carousel’s moving surface. High surface reflectances help increase the interreflected component of illuminance and the vertical illuminances at face height.

Image ©Jon Feingersh Photography/Superstock/Corbis

Figure 36.2 | Horizontal Belt Baggage Carousel
1 Indirectly lighted shallow vaulted coffer provides general illumination. 2 Additional downlights illuminate the horizontal moving belt.

Image ©Scott Barrow/Corbis
Figure 23.1 | Courtroom Lighting
Top left is view from judge's bench. Bottom left view is from audience seating area. Right view is a detail of the feature stone wall behind the judge's bench. Perimeter accenting contributes to pleasantness and spaciousness in this courtroom. The diffuse reflected light of the wall accenting and the cove contributes greatly to vertical illuminances which assist in facial modeling. Downlighting contributes here to visual clarity and horizontal illuminances for reading and writing tasks.

Ambient lighting consists of the cove lighting 1 which uses an asymmetric reflector housed in a drywall detail. The asymmetric reflector is lamped with T5 standard output linear fluorescent lamps exhibiting 3000 K CCT and 85 CRI. Task lighting consists of the downlights 2 which are open reflector and lamped with 32 W triple-tube CFLs exhibiting 3000 K CCT and 83 CRI. Accenting consists of one approach, perimeter lighting. This is achieved with two techniques. Spread lens wallwashers 3 lamped with 32 W triple-tube CFLs are used along two side walls. A linear wallslot detail 4 grazes the stone feature wall behind the bench also shown in the detail image to the right. The wallslot is a drywall detail consisting of monopoints on 15” centers. The monopoints are lamped with 20 W T4.5/GU6.5 CMH lamps exhibiting 3000 K CCT and 80 CRI.

Downlights are dimmable and grouped in three zones: a zone at the bench; a zone in the middle of the room to address the well; and a zone at the public seating area. Cove lighting is dimmable and is on an independent zone. Perimeter wall washing is dimmable and on three zones: one for each side and one at the main entrance wall. The front wallslot is nondim on a single zone. This level of control permits presets that might include these scenes: ADMIN, SESSION, AV, SPECIAL, and OFF.

> Images ©Photographer: James Haefner
Figure 24.4 | Electric and Daylighting
The continuous clerestory offers an opportunity to harvest daylight along the half of the classroom closest to the exterior wall. The linear pendant luminaires in the classroom exhibit two lamps in cross section. At the perimeter luminaire ①, the rows of lamps are wired for two zones of control. The outboard lamp row (the row of lamps closest to the exterior) is switched separately from the inboard row. When a photocell senses that enough daylight is present, one row is automatically extinguished. Which zone is extinguished can be alternated on a daily basis to equalize and extend in-service life of the ballasts and lamps. If not considered too disruptive, both lamp rows could be extinguished when sufficient daylight is available, and this is the typical approach. No window treatment can be a successful approach on north facades and where TC is of moderate value, but which depends on geographic location, typical sky conditions, and reviews of daylight simulations. Otherwise, automated shades are best.

Wallwashers are used to highlight whiteboards ②. Controls establish preset scenes that extinguish these luminaires during AV presentations.

Present-day projection systems are sufficiently powerful to permit viewing during full-light conditions. This is useful when the presentation is mixed with traditional reading and writing tasks. However, to optimize viewing conditions and maximize energy savings, staff instruction on the use of controls is necessary.

High-reflectance matte wall and ceiling finishes greatly improve the effectiveness of daylight and electric light ③.

* Image ©B Lindhout Photography