Strategies for Reducing Impacts of Drought, Insects and Disease

David Shaw FNR Extension dave.shaw@ore gonstate.edu

https://www.pinterest.com/pin/143481938103820703/

Strategies for Reducing Impacts of Drought, Insects and Disease

- Introduction:
 - Dead trees
 - The rate of mortality
- Hotter Drought
 - VPD and tree mortality
 - California Epic Drought and Tree Death
- Insect and Pathogen Response to Drought and Climate Change
- Managing Stands
- Landscapes

Predicted Climate Changes: Depends on Geographic Region

Douglas-fir mortality in Willamette Valley associated with drought

Common Changes Predicted for the Short-Term...~50 years

- Hotter Drought
- Hotter, Drier, Longer Growing Season
- Warmer Winter
 - Wetter winter?
 - Low snowpacks
- Shift in Late-Spring and Summer Precipitation?
- Extreme Events!

But...Does a healthy forest have dead trees?

- Mortality is important for stand development and sustainability
- Dead trees are important for habitat, biodiversity, and forest resilience
- The rate of mortality is key to forest health (%/year) and economic losses

The Rate of Mortality

- The rate of tree mortality is probably a better indicator of ecosystem and economic impacts.
- Rate is %tree dying/yr
- We prefer to stay under about 2%

From McDowell et al. 2015. Nature Climate Change.

"Multi-scale predictions of massive conifer mortality due to chronic temperature rise."

Risks to Forests From Climate Change

- Tree Mortality
- Reduced Productivity
- Local Tree Species Extinctions
- Loss of Biodiversity
- Loss of Ecosystem Function

Polling Question 1.

- Have you had any tree mortality in your woods, or in your local area in the last few years?
 - Not sure
 - A little
 - A lot

Drought is thought to be increasing in many ways: The U.S. Drought Monitor

- U.S. Drought Monitor is the best integrating system available.
- 5 Factor Metric!
- Palmer Drought Severity Index
- CPC Soil Moisture Model
- USGS Weekly Streamflow
- Standardized Precipitation Index
- Objective Drought Indicator Blends

https://droughtmonitor.unl.edu/CurrentMap.aspx

U.S. Drought Monitor Oregon

June 2, 2020 (Released Thursday, Jun. 4, 2020)

Valid 8 a.m. EDT

Intensity:

None

D0 Abnormally Dry

D1 Moderate Drought

D2 Severe Drought

D3 Extreme Drought

D4 Exceptional Drought

The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. For more information on the Drought Monitor, go to https://droughtmonitor.unl.edu/About.aspx

Author:

Curtis Riganti National Drought Mitigation Center

droughtmonitor.unl.edu

20 Year Record of Drought Severity in Oregon

Jan 1, 2000 Jan 1, 2010 Jan 1, 2020

October 6, 2015

U.S. Drought Monitor
West

October 6, 2015

(Released Thursday, Oct. 8, 2015)

Abnormally Dry

Moderate Drought

Severe Drought

Extreme Drought

Exceptional Drought

Local conditions may vary. See accompanying text summary for forecast statements.

Author: David Miskus NOAA/NWS/NCEP/CPC

http://droughtmonitor.unl.edu/

September 27, 2016

U.S. Drought Monitor West

September 27, 2016

(Released Thursday, Sep. 29, 2016) Valid 8 a.m. EDT

Drought Conditions (Percent Area)

2	None	D0-D4	D1-D4	D2-D4	D3-D4	D4
Current	27.78	72.22	30.95	13.45	5.77	2.81
Last Week 9/20/2016	23.39	76.61	32.27	13.67	5.77	2.81
3 Months Ago 6/28/2016	35.80	64.20	27.65	11.08	5.80	2.81
Start of Calendar Year 12/29/2015	33.17	66.83	45.07	29.30	15.92	6.85
Start of Water Year 9/29/2015	22.77	77. <mark>2</mark> 3	57.81	42.42	26.50	7.62
One Year Ago 9/29/2015	22.77	77.23	57.81	42.42	26.50	7.62

Intensity:

The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. See accompanying text summary for forecast statements.

Author:

Chris Fenimore
NCEI/NESDIS/NOAA

http://droughtmonitor.unl.edu/

• California, USA

Progessive Forest
 Canopy Water Stress
 2011-2015

 Indicates potential tree stress.

Greg Asner, Stanford Univ.
 Carnegie Airborne Observatory

Progression of Tree Mortality

Hotter Drought in California: 120,000,000+ trees died

- Unusual Event
 - 100,000 yr event
- Large scale mortality.
- Pinus ponderosa
- Abies species.
- Bark Beetles:
 - Western Pine Beetle
 - Fir Engraver

P. ponderosa mortality in S. California 2016

Polling Question 2.

 Can the California style drought happen in Oregon?

• Yes

• No

Hotter Drought

esa

ECOSPHERE

ESA CENTENNIAL PAPER

On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene

CRAIG D. ALLEN, 1, T DAVID D. BRESHEARS, 2 AND NATE G. McDowell 3

California, USA
 Mortality Event

Pinus ponderosa mortality in California, USA
California Tree Mortality
Task Force

Hotter Drought VPD and tree mortality

Vapor Pressure Deficit-VPD

 Vapor pressure is the amount of water in the air

 VPD is the difference between the maximum amount of water the air can hold and the amount actually in the air

- VPD can be thought of as the drying power of the air.
- The higher the VPD, the greater the power of drying (water evaporating)
- Plant stress especially relates the VPD because it increases the water loss by the plant/tree
- Trees have to close air pores to prevent drying, and therefore can't get carbon dioxide to photosynthesize

Stomates of a plant (air pores)

https://tophat.com/marketplace/science-&-math/biology/textbooks/oer-openstax-biology-openstax-content/79/4133/

Part II

VPD and Tree Death

- The higher the temperature, the more water the air can hold.
- Higher VPD is associated with higher temperature
- Climate change is increasing temperature
- Tree may not be able to move water fast enough to keep up with loss
 - Catastrophic embolism

VPD and Douglas-fir

Study by Restaino et al.
 2016. PNAS

 Increased water deficit decreases Douglas fir growth throughout the western US forests.

Hotter drought increases VPD!

An Example of biota and hotter drought interaction (hypothetical) Flatheaded fir borer: *Melanophila drummondi*

Flatheaded fir **borer** in Douglas-fir, (Phaenops drummondi, Coleoptera:

Buprestidae

"Classic" flatheaded fir borer mortality pattern of Douglas-fir. Edges and among oaks. Photo: Bill Schaupp

B. Schaupp, USFS

Risk Map for Flatheaded Fir Borer in Southern Oregon (Klamath Mts.)

Max Bennett, OSU FNR Ext.

Associated with: Ann. Precip < 40 inches Elevation 1,500-3,500ft

NOT:

Aspect
Heat Load index
Slope position
Slope
Density Canopy Cover
Age

Vapor Pressure Deficit

- Late spring
- Summer
- Explain Mortality?
- From Max
 Bennett, OSU
 Forestry Extension
- South Oregon

Polling Question 3

- What do you believe are the most important causes of the tree mortality you've observed? Pick two.
- Wrong species for the site
- Lack of management
- Drought
- Extreme high or low temperature or other weather extremes
- High VPD (hotter drought)
- Lack of salvage of dead and dying trees
- Stand damage (soil compaction, etc.)
- Tree diseases
- Bark beetles
- Other insect pests
- Overstocking, overly dense forests
- Other

Douglas-fir mortality caused by black stain root disease

Insect and Pathogen Response to Drought and Climate Change

- Pathogens are controlled by moisture and temperature
- Some respond to stress and low vigor
 - Armillaria root disease
 - Black stain root disease
 - Cankers
 - Diplodia tip blight
- Others prefer summer moisture or healthy trees
 - Foliage diseases
 - Mistletoe
 - Laminated root rot
 - White pine blister rust

Black stain root disease is vectored by weevils and a root bark beetle known to focus on low vigor trees

Pre-existing condition of the tree is important to drought and pest/pathogen response

- Pathogens already present on a tree
 - Root disease
 - Dwarf mistletoe
- Vigor/carbohydrate status... was the tree defoliated
- Recent events?

Climate Change and Forest Insect Pests

- Recent paper in Frontiers in Ecology and the Environment
- Lehmann et al. Complex responses of global insect pests to climate warming. Frontiers in Ecology and Environ. 2020.
- Four ways climate change impacts insect pests:
- Geographic Range Changes
- Insect Population Dynamics
- Life History Traits
- Trophic Interactions (predators, parasitoids, host plants)

Polling Question 4

- Which of the following statements is generally true?
- Dead trees harbor insects that pose a threat to surrounding trees, so they should be removed
- Dead trees are important for habitat and biodiversity
- Tree mortality is important for stand development
- Both B and C

Management for drought, insects, and pathogens: at the stand level.

- It depends!
- Location of the stand
- Age, structure, composition
- History
- Planting the right tree in the right place

Western spruce budworm defoliation, associated with fire suppression, reduction of large pine, larch and Douglas-fir, and an increase in un-even aged grand fir and Douglas-fir which create multistoried stands

Landscape setting and location of your stand(s)

- Cold and humid air flow
- Pooling and settling
- Flats, benches, wetlands

 Select the right tree for the site

Hypothetical higher hazard zones for foliage diseases and rust fungi are areas of humid air flow and humid air pooling, yet these sites might be most buffered from heat events

Managing for drought impacts

Right tree in the right place

Density and competition management

Shift to drought tolerant species

 Reduce exposure of individual tree crowns/soil (hotter drought)

Silviculture

- Establishment of plantation
- Intermediate treatments
- Rotation age
- Uneven age management vs. even aged management
- Non-timber emphasis

Polling Questions 5

- Which location (A, B, or C) has the highest likelihood of foliage diseases due to flow and pooling of moist air?
- Which location (A, B, or C) is likely to be the LEAST buffered from drought effects?

Landscapes Age-class Distribution of West-side Forests in the PNW

• 1–50 years (red): 41%

• 50–250 years (yellow): 53%

• > 250 years (blue): 7%

 Forest insects and pathogens predominant certain age classes

Short rotation, intensive management is can shift pests to young forest plantation dominant pests

Conclusions

- Drought impacts will vary with landscape setting and changing climate
- Specific insect and pathogens will vary with geographic location and tree species.... interacting with weather
- Dominance of one age class and species can exacerbate a particular issue.

Polling Question 6

- Strategies to mitigate drought impacts include
- Right tree in the right place
- Density and competition management
- Inland: shift to drought tolerant species
- Reduce exposure of individual tree crowns/soil (hotter drought)
- All of the above

