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ABSTRACT: Stokes drift may be regarded as the wave-correlated mean component of horizontal

fluid motion in a surface gravity wave field. For linear, sinusoidal, non-rotating waves, this

wave drift can be computed kinematically using Lagrangian, fixed-depth (relative to the mean sea

surface) Eulerian, or surface-conforming Eulerian means. To understand the corresponding motion

that is induced in the rotating frame in an equilibrium wind-sea, it is necessary to consider the

forced-damped momentum balance that maintains the drift. It is natural to associate the force with

the wave-correlated pressure force on the free surface, which imparts momentum but no vorticity

to the wave field. The damping presumably derives primarily from wave-breaking, for which an

idealized representation is introduced in terms of linear drag with a damping timescale derived from

equilibrium wind-wave theory. The resulting forced-damped wave and mean wave-drift momentum

balances are examined, for both Eulerian mean representations of the mean momentum balances.

It is concluded that in a rotating equilibrium sea with Coriolis parameter computed at 40◦ N, the

mean Stokes drift will be directed up to 10◦−45◦ to the right of downwind, depending on depth,

wavelength, and wind-wave amplitude or wind speed. The parameterized wave-breaking force

and the wave drift for a rotating equilibrium-sea spectral wave field are combined with a recently-

proposed, semi-empirical, rotating equilibrium-sea wind-drift model to obtain predictions of the

combined wind and wave drift. The resulting predictions differ modestly but systematically from

wind-drift-only predictions from the rotating equilibrium-sea wind-drift model.
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1. Introduction25

When the wind blows over the sea surface, the transfer of momentum across the air-sea interface26

induces and is supported by a combination of surface wave and near-surface turbulent, wave-27

coherent and mean motions. Even for uniform density, incompressible fluids, the resulting problem28

for the detailed dynamics of the full turbulent and wave motion is beyond present theoretical29

understanding (see, e.g., Phillips 1977; Sullivan and McWilliams 2010; D’Asaro et al. 2014;30

Sutherland and Melville 2015; Grare et al. 2018; Pizzo et al. 2021, and numerous related works).31

Simple theoretical ideas, beginning with the classical, constant turbulent viscosity model of Ekman32

(1905), have nonetheless proven useful for the conceptual and, in part, quantitative description of33

the mean wind-driven motion in the surface ocean boundary layer, as demonstrated for example by34

the observational analysis of Chereskin (1995). It is generally accepted, however, that the wind-35

driven motion in the upper few meters departs significantly from that predicted by the classical36

Ekman model with constant turbulent viscosity (e.g., Ardhuin et al. 2009; Rascle and Ardhuin 2009;37

Zelenke et al. 2012; Morey et al. 2018; Laxague and Zappa 2020). This near-surface “wind-drift”38

component of the mean wind-driven motion tends to have a greater downwind component and39

larger magnitude than the near-surface velocity predicted by the Ekman (1905) constant turbulent40

viscosity model but a broadly accepted, quantitative, physical model of this mean near-surface41

wind drift does not presently exist.42

A simple but novel semi-empirical model of the near-surface wind drift under the statistically43

stationary conditions of a homogeneous, equilibrium sea was proposed recently by Samelson44

(2022). The new elements of this model included a wind-speed-dependent roughness length, a45

wind-speed-dependent wave correction factor, and a mass-weighted, surface-conforming, spatial-46

average Eulerian mean velocity. The parameterized roughness length and wave correction factor47

allowed large departures of the wave-affected near-surface conditions from those represented by48

standard values of the roughness length and von Kàrmàn constant for rigid-surface wall boundary49

layers. The surface-conforming Eulerian mean was shown to capture the mean wave-drift momen-50

tum of linear surface gravity waves that in the Lagrangian representation is generally known as51

Stokes drift and which is generally missed by traditional, fixed-depth Eulerian means. This wind-52

drift model has been compared with an extensive, multi-instrument, in-situ and remote-sensing53

dataset of near-surface velocity measurements from the Sub-Mesoscale Ocean Dynamics Exper-54
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iment (Farrar et al. 2025) and shown to have useful skill for the range of conditions represented55

in the dataset (Leyba et al. In preparation). The best results in that comparison were obtained for56

modified versions of the roughness length and wave-correction factor parameterizations originally57

proposed by Samelson (2022).58

A limitation of the Samelson (2022) model is that while the mean horizontal velocity was59

formulated to capture the mean Stokes drift from the equilibrium-sea wave field, the downward60

momentum transport was modeled as an effective turbulent stress and did not incorporate a body61

force component that might be anticipated to offer a more physically consistent representation62

of any mean wave-coherent pressure forcing that may be associated with the surface wave field.63

The main goal of the work described here is to explore this possibility by constructing a simple64

physical model of forced-damped wave drift in a rotating ocean, and then combining the wave-drift65

model and the implied wave-coherent body forcing with the Samelson (2022) wind-drift model to66

obtain a model of the total equilibrium-sea wind and wave drift. The resulting considerations lead67

also to the conclusion that, under equilibrium-sea conditions in a rotating ocean, a wavelength-68

dependent rotation of the mean Stokes drift arises that is analogous to the depth-dependent rotation69

of the classical Ekman (1905) mean wind drift. Essentially, the damping modifies the inviscid70

rotating wave balance such that the induced inertial oscillations described by Hasselmann (1970)71

are replaced by rotation of the mean forced-damped wave drift.72

2. Wave drift for linear rotating waves73

a. Linear equations with rotation and damping74

In the equilibrium-sea setting, it is necessary to include in the dynamical equations a representa-75

tion of wave dissipation from wave breaking and related processes, in order that a forced-damped76

equilibrium balance can be established. For simplicity, this dissipation is represented as linear77

damping of the vector momentum with a constant, isotropic damping coefficient. The main mo-78

tivation for this simple representation is that it allows the derivation of analytical results that79

should provide at least qualitative physical insight into the potential effects of damping on the80

equilibrium-sea drift. The physical interpretation of this form of damping is discussed in Section81

5. The inclusion of this damping distinguishes the dynamical setting from, for example, the inviscid82

rotating waves considered by Hasselmann (1970) and Xu and Bowen (1994).83
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If the motion field is assumed to be two-dimensional, with all wave crests and troughs perpen-84

dicular to the 𝑥-axis, the linear wave equations with rotation and linear drag are:85

𝜕𝑢

𝜕𝑡
− 𝑓 𝑣 = − 1

𝜌0

𝜕𝑝

𝜕𝑥
−Γ𝑆 𝑢, (1)

𝜕𝑣

𝜕𝑡
+ 𝑓 𝑢 = −Γ𝑆 𝑣, (2)

𝜕𝑤

𝜕𝑡
= − 1

𝜌0

𝜕𝑝

𝜕𝑧
−𝑔−Γ𝑆𝑤, (3)

𝜕𝑢

𝜕𝑥
+ 𝜕𝑤
𝜕𝑧

= 0, (4)

with surface boundary conditions86

𝑤 =
𝜕𝜁

𝜕𝑡
and 𝑝 = 𝑝𝑎 (𝑥, 𝑡) at 𝑧 = 𝜁 (𝑥, 𝑡). (5)

All variables in (1)-(4) are required also to vanish as 𝑧→−∞. In (1)-(5), (𝑢, 𝑣,𝑤) are the velocities87

in the (𝑥, 𝑦, 𝑧) directions, respectively, 𝑝 is the pressure, 𝑓 is the constant Coriolis parameter, 𝜌088

is a constant reference density, 𝑔 is the constant acceleration of gravity, Γ𝑆 is a constant damping89

coefficient, 𝜁 is the free-surface displacement, and 𝑝𝑎 is the atmospheric pressure at the free surface.90

In Section 4, Γ𝑆 will be related to the inverse of a wind-sea equilibration timescale 𝑇𝑆, which in91

general will be much longer than the timescale 𝑇𝜎 ≈ 2𝜋/𝜎 for surface gravity wave oscillations92

with frequency 𝜎, so that Γ𝑆/𝜎≪ 1.93

The damped rotating wave solutions of (1)-(5) with Γ𝑆 ≠ 0 retain the two-dimensional structure94

of the inviscid wave described by Hasselmann (1970) and Xu and Bowen (1994). The velocity95

variables may be eliminated from (1)-(4) to obtain the pressure evolution equation,96 (
𝜕

𝜕𝑡
+Γ𝑆

)2 (
𝜕2𝑝

𝜕𝑥2 + 𝜕
2𝑝

𝜕𝑧2

)
+ 𝑓 2 𝜕

2𝑝

𝜕𝑧2 = 0. (6)

Following Hasselmann (1970) or Komen et al. (1994), let97

(𝑢, 𝑣,𝑤, 𝜁 , 𝑝 +𝑔𝜌0𝑧) = [𝑈̂ (𝑧, 𝑡),𝑉̂ (𝑧, 𝑡),𝑊̂ (𝑧, 𝑡), 𝑍 (𝑡), 𝑃̂(𝑧, 𝑡)] 𝑒𝑖𝑘𝑥 (7)
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in (1)-(6). It follows from the surface boundary condition (5) that98

𝑃̂(𝑧 = 𝜁, 𝑡) = 𝑃𝑎 (𝑡) + 𝜌0𝑔𝑍 (𝑡) where 𝑃𝑎 (𝑡)𝑒𝑖𝑘𝑥 = 𝑝𝑎 (𝑥, 𝑡), (8)

with the usual interpretation of the complex notation for the wave phase structure. With rotation,99

it is necessary to allow an independent vertical decay scale 𝑚, so that100

[𝑈̂ (𝑧, 𝑡),𝑉̂ (𝑧, 𝑡),𝑊̂ (𝑧, 𝑡), 𝑃̂(𝑧, 𝑡)] = [𝑈 (𝑡),𝑉 (𝑡),𝑊 (𝑡), 𝑃(𝑡)] 𝑒𝑚𝑧, (9)

where from (5) now also101

𝑊 =
𝑑𝑍

𝑑𝑡
(10)

𝑃 = 𝑃𝑎 + 𝜌0𝑔𝑍, (11)

and the surface boundary conditions on 𝑊̂ and 𝑃̂ have been applied at 𝑧 = 0, consistent with the102

linear approximation to the dynamics. The vertical momentum balance (3) can be evaluated at103

the surface, using the boundary conditions (10)-(11) and with (7)-(9), to obtain a single evolution104

equation for 𝑍 (𝑡),105 (
𝑑

𝑑𝑡
+Γ𝑆

)
𝑑𝑍

𝑑𝑡
= −𝑔𝑚(𝑍 + 𝑍𝑎), (12)

where106

𝑍𝑎 =
1
𝜌0𝑔

𝑃𝑎 . (13)

The rotating linear wave solutions with complex frequency 𝜎̃,107

𝑍 (𝑡) = 𝑍0𝑒
−𝑖𝜎̃𝑡+𝑚𝑧, 𝑃̂(𝑧, 𝑡) = 𝑃(𝑡) 𝑒𝑚𝑧 = 𝑃0𝑒

−𝑖𝜎̃𝑡+𝑚𝑧, (14)

then must have, from (6),108

(Γ𝑆 − 𝑖𝜎̃)2(𝑚2 − 𝑘2) + 𝑓 2𝑚2 = 0 (15)

and, from the surface boundary conditions (10)-(11),109

−𝑖𝜎̃(Γ𝑆 − 𝑖𝜎̃)𝑍 = −𝑔𝑚(𝑍 + 𝑍𝑎). (16)
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The vertical decay scale 𝑚 may be eliminated between (15) and (16), and setting 𝑍𝑎 = 0 then gives110

the dispersion relation 𝜎̃ = Σ(𝑘) for the damped, rotating free waves, which are the homogeneous111

solutions of (1)-(5). To first order in Γ𝑆/𝜎 and 𝑓 2/𝜎2, the resulting vertical decay scale 𝑚 and112

complex frequency 𝜎̃,113

𝑚 =

(
1+ 𝑓 2

2𝜎2

)
𝑘 ≈ 𝑘, 𝜎̃ =

(
1+ 𝑓 2

4𝜎2

)
(𝑔𝑚)1/2 − 1

2
𝑖Γ𝑆 ≈ 𝜎− 𝑖 𝑟𝑆, (17)

have rotational corrections of order 𝑓 2/𝜎2, where114

𝜎 = (𝑔𝑘)1/2 (18)

is the usual, inviscid, deep-water gravity wave frequency and115

𝑟𝑆 =
1
2
Γ𝑆 (19)

is the decay rate for the damped free waves. The 𝑓 2/𝜎2 terms in (17) are negligible for wind-sea116

waves, which generally have periods 𝑇𝜎 = 2𝜋/𝜎 ≤ 10 s, and are much smaller than the neglected117

corrections of order Γ2
𝑆
/𝜎2. Thus, the vertical decay scale and free-wave frequency may be118

considered unchanged from the non-rotating case: 𝑚 = 𝑘 and 𝜎 = (𝑔𝑚)1/2 = (𝑔𝑘)1/2.119

The corresponding solutions for (𝑈,𝑉,𝑊) with time dependence as in (14) can be computed120

from the solutions (14)-(18) for (𝑍,𝑃) using (10), (11) and (13) with 𝑍𝑎 = 0, and the cross-wind121

momentum and mass conservation equations,122 (
𝑑

𝑑𝑡
+Γ𝑆

)
𝑉 = − 𝑓𝑈, 𝑊 = −𝑖𝑈. (20)

The inviscid (Γ𝑆 = 0) versions of these linear, rotating, wave solutions and the corresponding exact,123

inviscid expressions for 𝑚 and 𝜎̃ were obtained by Xu and Bowen (1994).124

b. Inviscid mean wave drift and Coriolis force balance125

An Eulerian momentum balance for the mean wave drift can be derived in two ways: for a126

fixed-depth (relative to the mean sea surface) Eulerian mean, in which the wave drift is confined127
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between the trough and crest of the wave (Hasselmann 1970; Phillips 1977), and for a mass-128

weighted, surface-conforming, lateral spatial mean, in which the wave drift has the same vertical129

profile as the classical Stokes-drift Lagrangian mean (Samelson 2022). The derivation of these130

inviscid wave-drift balances, equivalent to those derived by Hasselmann (1970), is summarized131

here, preliminary to consideration of the forced-damped balances in Section 4. The traditional,132

fixed-depth Eulerian mean taken below the wave troughs does not capture this wave drift or the133

associated momentum balance.134

Consider the inviscid (𝑟𝑆 = 0) free-wave solution with free surface displacement135

𝜁 (𝑥, 𝑡) = Re{𝑍 (𝑡)𝑒𝑖𝑘𝑥} = 𝑎 cos(𝑘𝑥−𝜎𝑡), (21)

where Re{·} denotes the real part and 𝑎 ≪ 𝑘−1. The corresponding downwind wave velocity136

𝑢(𝑥, 𝑧, 𝑡) is137

𝑢(𝑥, 𝑧, 𝑡) = Re{𝑈 (𝑡) 𝑒𝑘𝑧} = Re{𝑖𝑊 (𝑡) 𝑒𝑘𝑧} = Re{𝑖 𝑑𝑍
𝑑𝑡
𝑒𝑘𝑧} = 𝜎𝑎𝑒𝑘𝑧 cos(𝑘𝑥−𝜎𝑡). (22)

In the translating reference frame (𝑥, 𝑧, 𝑡), where138

𝑥(𝑥, 𝑡) = 𝑥− 𝑐𝑡, 𝑧 = 𝑧, 𝑡 = 𝑡, (23)

and 𝑐 = 𝜎/𝑘 , the downwind velocity 𝑢̃(𝑥, 𝑧) is steady,139

𝑢̃(𝑥, 𝑧) = 𝜎𝑎𝑒𝑘𝑧 cos 𝑘𝑥. (24)

Below the wave troughs, the fixed-depth Eulerian mean𝑈𝐸 of 𝑢̃ is zero, because 𝑢̃ is periodic in140

𝑥. Between the troughs and crests, however, the fixed-depth Eulerian mean𝑈𝐸 does not vanish:141

𝑈𝐸 ( |𝑧 | ≤ 𝑎) =
1

2𝜋

∫ 𝜃𝜁 (𝑧)

−𝜃𝜁 (𝑧)
𝜎𝑎 cos𝜃 𝑑𝜃 =

𝜎𝑎

𝜋

(
1− 𝑧

2

𝑎2

)1/2

, (25)

where 𝜃 = 𝑘𝑥 and 𝜃𝜁 (𝑧) = arccos( |𝑧 |/𝑎). In (25), the approximation142

𝑢̃(𝑥, |𝑧 | ≤ 𝑎) ≈ 𝜎𝑎 (1+ 𝑘𝑧) cos 𝑘𝑥 ≈ 𝜎𝑎 cos 𝑘𝑥 (26)
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has been made, consistent with the small-slope condition 𝑘𝑎 ≪ 1. From (20) with Γ𝑆 = 0, the143

cross-wind velocity 𝑣(𝑥, 𝑧, 𝑡) is out of phase with 𝑢(𝑥, 𝑧, 𝑡) and has zero mean between the troughs144

and crests:145

𝑣(𝑥, 𝑧, 𝑡) = 𝑓 𝑎𝑒𝑘𝑧 sin(𝑘𝑥−𝜎𝑡), (27)

so that146

𝑣̃(𝑥, 𝑧) = 𝑓 𝑎𝑒𝑘𝑧 sin 𝑘𝑥, (28)

and147

𝑉𝐸 ( |𝑧 | ≤ 𝑎) =
1

2𝜋

∫ 𝜃𝜁 (𝑧)

−𝜃𝜁 (𝑧)
𝑓 𝑎 sin𝜃 𝑑𝜃 =

𝑓 𝑎

2𝜋
(cos𝜃)

����𝜃𝜁 (𝑧)
−𝜃𝜁 (𝑧)

= 0. (29)

The along-crest acceleration, however, is in phase with the free-surface displacement and down-148

wind velocity,149

𝜕𝑣

𝜕𝑡
=
𝜕

𝜕𝑡
𝑣̃ [𝑥(𝑥, 𝑡), 𝑧] = −𝑐 𝜕𝑣̃

𝜕𝑥
= −𝑐𝑘 𝑓 𝑎 cos 𝑘𝑥. (30)

Consequently, and consistent with the momentum balance (20) from which 𝑣(𝑥, 𝑧, 𝑡) was obtained,150

the mean along-crest acceleration is not zero between the troughs and crests, but instead precisely151

balances the mean Coriolis force associated with the mean wave drift𝑈𝐸 :152

𝜕𝑉𝐸

𝜕𝑡
( |𝑧 | ≤ 𝑎) = 1

2𝜋

∫ 𝜃𝜁 (𝑧)

−𝜃𝜁 (𝑧)

(
−𝑐 𝜕𝑣̃
𝜕𝑥

)
𝑑𝜃 = − 𝑓 𝜎𝑎

𝜋

(
1− 𝑧

2

𝑎2

)1/2

= − 𝑓𝑈𝐸 ( |𝑧 | ≤ 𝑎). (31)

A physical interpretation of this balance is that the Coriolis force from the fixed-depth mean153

downwind wave velocity 𝑈𝐸 drives and is absorbed by the change in 𝑣 from the leading to the154

trailing edge of the wave at each fixed depth between trough and crest. This change in 𝑣 appears155

directly through the integral in (31),156 ∫ 𝜃𝜁 (𝑧)

−𝜃𝜁 (𝑧)

(
−𝑐 𝜕𝑣̃
𝜕𝑥

)
𝑑𝜃 = −𝑐𝑘

∫ 𝑘−1𝜃𝜁 (𝑧)

−𝑘−1𝜃𝜁 (𝑧)

𝜕𝑣̃

𝜕𝑥
𝑑𝑥 = −𝜎

∫ 𝑣+

𝑣−

𝑑𝑣̃ = −𝜎(𝑣+− 𝑣−), (32)

where157

𝑣± = 𝑣̃ [±𝑘−1𝜃𝜁 (𝑧), 𝑧] = ± 𝑓 𝑎 sin
[
𝑘−1𝜃𝜁 (𝑧)

]
= ± 𝑓 𝑎

(
1− 𝑧

2

𝑎2

)1/2

(33)

are the leading-edge and trailing-edge values of 𝑣, respectively, at the fixed depth 𝑧 = 𝑧 between the158

trough and crest.159
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An alternative Eulerian mean that is more amenable to physical interpretation may be computed160

in surface-conforming, orthogonal curvilinear coordinates, provided that care is taken to weight the161

transformed variables properly by mass (Samelson 2022). In the translating frame, the orthogonal162

curvilinear coordinates for the linear wave motion (21) are (Phillips 1977)163

𝜉 (𝑥, 𝑧) = 𝑥− 𝑎𝑒𝑘𝑧 sin 𝑘𝑥, (34)

𝜂(𝑥, 𝑧) = 𝑧− 𝑎𝑒𝑘𝑧 cos 𝑘𝑥. (35)

The transformation (34)-(35) may be inverted to the same accuracy, giving164

𝑋̃ (𝜉,𝜂) = 𝜉 + 𝑎𝑒𝑘𝜂 sin 𝑘𝜉, (36)

𝑍̃ (𝜉,𝜂) = 𝜂+ 𝑎𝑒𝑘𝜂 cos 𝑘𝜉. (37)

Again to the same accuracy, the Jacobian determinant 𝐽 ( 𝑋̃, 𝑍̃) of the transformation (𝑥, 𝑧) =165

[𝑋̃ (𝜉,𝜂), 𝑍̃ (𝜉,𝜂)] is166

𝐽 ( 𝑋̃, 𝑍̃) = 1+2𝑘𝑎𝑒𝑘𝜂 cos 𝑘𝜉. (38)

To second order in wave slope, the mass-weighted, surface-conforming mean (Samelson 2022) of167

a function 𝜓(𝜉,𝜂) = 𝜓0𝑒
𝑘𝜂 cos 𝑘𝜉 on an arbitrary 𝜂 surface is then168

Ψ(𝜂) = − 𝑘

2𝜋

∫ 2𝜋/𝑘

0
𝜓(𝜉,𝜂) 𝐽 ( 𝑋̃, 𝑍̃) 𝑑𝜉 = 𝑘𝑎𝜓0𝑒

2𝑘𝜂, (39)

The mean depth 𝑍̄ (𝜂) of a given 𝜂 surface is, similarly,169

𝑍̄ (𝜂) = 𝑘

2𝜋

∫ 2𝜋/𝑘

0
𝑍̃ (𝜉;𝜂) 𝐽 ( 𝑋̃, 𝑍̃) 𝑑𝜉 = 𝜂+ 𝑘𝑎2

(
𝑒2𝑘𝜂 −1

)
, (40)

and the surface-conforming mean wave drift 𝑈𝑆 (𝑍̄) derived by Samelson (2022) for the velocity170

𝑢( 𝑋̃, 𝑍̃) = 𝜎𝑎𝑒𝑘 𝑍̃ cos 𝑘 𝑋̃ = 𝑢(𝜉,𝜂) = 𝜎𝑎𝑒𝑘𝜂 cos 𝑘𝜉 is, to second order in 𝑘𝑎,171

𝑈𝑆 (𝑍̄) = 𝜎𝑘𝑎2𝑒2𝑘 𝑍̄ , (41)
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which in turn is equal to the classical Lagrangian mean Stokes drift (e.g., Phillips 1977; van den172

Bremer and Breivik 2018).173

Following the same approach as for (36)-(41), and using (39), shows that the mass-weighted,174

surface-conforming mean of the inviscid cross-wind velocity 𝑣̃ in (28) vanishes identically, while175

that of the inviscid acceleration 𝜕𝑣/𝜕𝑡 in (30) does not vanish and instead exactly balances the176

Coriolis force from the mean downwind drift at each depth,177

𝜕𝑣

𝜕𝑡
=

(
𝑘𝑎𝑒2𝑘 𝑍̃

)
× (−𝑐𝑘 𝑓 𝑎) = − 𝑓 𝜎𝑘𝑎2𝑒2𝑘 𝑍̃ = − 𝑓𝑈𝑆 . (42)

A physical interpretation of the cross-wind momentum balance in the surface-conforming mean is178

that the greater Coriolis force in the crest, where the coordinate is stretched vertically and the mass179

is concentrated, causes a velocity acceleration equal and opposite to that caused by the weaker180

Coriolis force below the trough, where the coordinate is compressed vertically and there is less181

mass per vertical coordinate unit.182

Thus, in both Eulerian means, the mean Coriolis force associated with the wave momentum (i.e.,183

the wave drift or, from the Lagrangian perspective, the Stokes drift) as computed from inviscid184

linear theory is from this perspective balanced within the fast timescale linear wave dynamics.185

Consequently, if the analysis were complete at this point, there would be no effect of this Coriolis186

force from the mean drift on the mean flow, i.e., no “Stokes-Coriolis” term should appear in the187

wave-averaged equations. However, both the Coriolis force and the acceleration terms are of second188

order in the small parameter 𝑘𝑎. Therefore, it is necessary to compute the nonlinear acceleration189

terms, which are nominally of this same order. This calculation was done by Hasselmann (1970)190

and Xu and Bowen (1994), who found that the mean nonlinear acceleration term in the cross-wind191

momentum equation is, at the same second order in 𝑘𝑎, equal to the Coriolis force from the mean192

wave drift. This mean nonlinear acceleration does not balance the mean wave-drift Coriolis force193

but instead adds to it. In effect, this restores the mean wave-drift Coriolis force in the mean194

cross-wind momentum balance.195

Because the nonlinear acceleration terms are nominally of second order in 𝑘𝑎, the associated196

Eulerian means can be computed directly at fixed depth throughout the mean water column, and197

the third-order terms deriving from correlations with the fluctuating sea surface can be neglected.198
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In the cross-wind momentum equation, the nonlinear acceleration terms are199

𝑢
𝜕𝑣

𝜕𝑥
+𝑤𝜕𝑣

𝜕𝑧
=
𝜕

𝜕𝑥
(𝑢𝑣) + 𝜕

𝜕𝑧
(𝑣𝑤). (43)

Since the product 𝑢𝑣 is periodic in 𝑥 at fixed depth, the fixed-depth mean of the first term vanishes,200

and the total mean cross-wind nonlinear acceleration is201

𝜕

𝜕𝑧
(𝑣𝑤) = 𝑘

2𝜋

∫ 2𝜋/𝑘

0

𝜕

𝜕𝑧

(
𝑓 𝑎𝑒𝑘𝑧 sin 𝑘𝑥×𝜎𝑎𝑒𝑘𝑧 sin 𝑘𝑥

)
𝑑𝑥 = 𝑓 𝜎𝑘2𝑎𝑒2𝑘𝑧 = 𝑓𝑈𝑆, (44)

as shown by Hasselmann (1970) and Xu and Bowen (1994). The mean local time derivative of the202

wave motion 𝑣(𝑥, 𝑧, 𝑡) balances the Coriolis force from the mean wave-drift according to (42), so the203

inclusion of the nonlinear acceleration (44) in the full second-order mean cross-wind momentum204

equation leaves an imbalance. This imbalance must be taken up by an additional local acceleration205

𝜕 (𝑉2𝑒
2𝑘𝑧)/𝜕𝑡 of a mean second-order drift𝑉2(𝑡)𝑒2𝑘𝑧, so that the full mean second-order horizontal206

momentum balance is207

𝜕𝑣

𝜕𝑡
+ 𝜕𝑉2
𝜕𝑡
𝑒2𝑘𝑧 + 𝜕

𝜕𝑧
(𝑣𝑤) + 𝑓𝑈𝑆 = 0, (45)

which, on using 𝜕𝑣/𝜕𝑡 = − 𝑓𝑈𝑆 = −𝜕/𝜕𝑧(𝑣𝑤) from (42) and (44), simplifies to208

𝜕𝑉2
𝜕𝑡
𝑒2𝑘𝑧 + 𝑓𝑈𝑆 = 0. (46)

In the downwind momentum equation, the nonlinear acceleration terms are209

𝑢
𝜕𝑢

𝜕𝑥
+𝑤𝜕𝑢

𝜕𝑧
=
𝜕

𝜕𝑥
(𝑢2) + 𝜕

𝜕𝑧
(𝑢𝑤), (47)

both of which vanish in the fixed-depth Eulerian mean, because 𝑢𝑤 ∝ cos 𝑘𝑥 × sin 𝑘𝑥 ∝ sin2𝑥, so210

there is no nonlinear correction to the mean downwind momentum balance. The non-rotating211

terms in the inviscid downwind momentum equation balance exactly,212

𝜕𝑢

𝜕𝑡
= − 1

𝜌0

𝜕𝑝

𝜕𝑥
= 𝜎2𝑎 sin(𝑘𝑥−𝜎𝑡), (48)
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so an additional local acceleration 𝜕 (𝑈2𝑒
2𝑘𝑧)/𝜕𝑡 of a mean second-order downwind drift𝑈2(𝑡)𝑒2𝑘𝑧

213

must likewise be allowed to balance the Coriolis force from the induced second-order drift 𝑉2𝑒
2𝑘𝑧

214

in the full mean second-order downwind momentum balance. With the Coriolis force from this215

additional downwind drift included in the cross-wind momentum equation, the full mean second-216

order horizontal momentum balance is,217

𝜕𝑈2
𝜕𝑡

𝑒2𝑘𝑧 − 𝑓 𝑉2𝑒
2𝑘𝑧 = 0,

𝜕𝑉2
𝜕𝑡
𝑒2𝑘𝑧 + 𝑓 (𝑈𝑆 +𝑈2𝑒

2𝑘𝑧) = 0. (49)

For steady mean wave drift 𝑈𝑆, this recovers the classical result of Hasselmann (1970) that there218

must be a steady mean upwind drift (𝑈20𝑒
2𝑘𝑧,𝑉20) = (−𝑈𝑆,0) that compensates the wave drift,219

plus homogeneous solutions in the form of inertial oscillations with 𝑈2 + 𝑖𝑉2 ∝ 𝑒−𝑖 𝑓 𝑡 . Nonlinear220

corrections to the linear kinematic surface boundary condition (5) must also be considered but both221

vanish in the mean, because the variable pairs in each of the two quadratic correction products,222

𝑢(𝜕𝜁/𝜕𝑥) and 𝜁 (𝜕𝑤/𝜕𝑧), are out of phase with one another.223

3. Forced-damped mean wave drift and Coriolis force balance224

With forcing and damping, i.e., with Γ𝑆 > 0 in (1)-(3) and 𝑝𝑎 ≠ 0 in (5), the balances and225

phase relations change such that monochromatic equilibrium-sea solutions of (1)-(5) exist in which226

inertial oscillations are absent and the Coriolis forces from the mean wave drift are balanced by drag227

on the mean drift. The forced-damped equations can be solved by separation into homogeneous and228

particular solutions, where the homogeneous solutions are now the damped free waves described229

in Sec. 2.a, for which rotation can be ignored to first order in the downwind momentum balance.230

To develop a forced-damped solution, it is necessary to specify the pressure forcing, which231

implicitly assumes a pre-existing wave disturbance relative to which the pressure phase can be232

defined. Consider a surface pressure disturbance 𝑝𝑎 (𝑥, 𝑦, 𝑡) that is correlated with the wave slope233

for the inviscid free-wave solution 𝜁 (𝑥, 𝑡) = 𝑎 cos(𝑘𝑥−𝜎𝑡) given in (21),234

𝑝𝑎 (𝑥, 𝑦, 𝑡) = −𝑃𝑎0 sin𝜃 (𝑥, 𝑡), 𝜃 (𝑥, 𝑡) = 𝑘𝑥−𝜎𝑡, (50)
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where 𝑃𝑎0 is a suitable positive constant. This gives a mean force 𝐹𝑃 on the propagating wave that235

may be taken to be a fraction 𝑏0 of the wind stress 𝜏0:236

𝐹𝑃 =
1

2𝜋

∫ 2𝜋

0
𝑝𝑎 (𝑥, 𝑡)

𝜕𝜁

𝜕𝑥
𝑑𝜃 =

1
2𝜋

∫ 2𝜋

0
𝑘𝑎𝑃𝑎0 sin2 𝜃 𝑑𝜃 =

1
2
𝑘𝑎𝑃𝑎0 = 𝑏0𝜏0. (51)

The correlation of the pressure disturbance with the vertical wave motion 𝑤(𝑥, 𝑧 = 0, 𝑡) =237

𝜎𝑎 sin𝜃 (𝑥, 𝑡) at the surface will also provide an energy flux 𝐹𝐾 that drives the wave field:238

𝐹𝐾 = − 1
2𝜋

∫ 2𝜋

0
𝑝𝑎 (𝑥, 𝑡)𝑤(𝑥, 𝑧 = 0, 𝑡) 𝑑𝑥 = 1

2𝜋

∫ 2𝜋

0
𝜎𝑎𝑃𝑎0 sin2 𝜃 𝑑𝜃

=
1
2
𝜎𝑎𝑃𝑎0 = 𝑐𝐹𝑃 = 𝑏0 𝑐 𝜏0, (52)

in agreement with standard wave energy growth scaling. If the wind-stress fraction 𝑏0𝜏0 is taken239

to depend linearly on the wave slope, so that240

𝑏0 = 𝑏2 𝑘𝑎, (53)

as suggested by, for example, the measurements by Buckley et al. (2020), then the pressure forcing241

amplitude242

𝑃𝑎0 =
2𝑏0𝜏0
𝑘𝑎

= 2𝑏2𝜏0 (54)

is independent of the wave slope.243

Solutions of (12) with 𝑚 = 𝑘 are again sought but now, for the forced-damped case, with244

𝑍𝑎 = 𝑃𝑎/(𝜌0𝑔) ≠ 0 for 𝑃𝑎 = −𝑖𝑃𝑎0𝑒
−𝑖𝜎𝑡 from (50) in the equivalent complex notation and with245

Γ𝑆 ≠ 0. The forcing at the real frequency 𝜎 = (𝑔𝑘)1/2 is not resonant in the damped case, and a246

particular solution 𝑍𝑝 of (12) can be directly obtained, for which247

𝜁𝑝 (𝑥, 𝑡) = Re{𝑍𝑝 (𝑡) 𝑒𝑖𝑘𝑥} = 𝑎𝑝 cos𝜃, (55)

where248

𝑎𝑝 =
𝜎𝑃𝑎0
𝜌0𝑔Γ𝑆

=
𝜎

Γ𝑆

2𝑏2𝜏0
𝜌0𝑔

(56)
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is the amplitude of the forced free-surface displacement response for the wave-slope dependent 𝑏0249

(53). If 𝑏0 is taken to be constant, independent of 𝑘𝑎, then (12) becomes nonlinear in the wave250

amplitude but a particular solution with constant 𝑎𝑝 can still be sought, for which (56) will be251

replaced by252

𝑎𝑝 =
𝜎

Γ𝑆

2𝑏0𝜏0
𝜌0𝑔𝑘𝑎𝑝

, (57)

which implies253

𝑎𝑝 =

(
2𝑏0𝜏0
𝜌0𝜎Γ𝑆

)1/2
(58)

The two expressions for 𝑎𝑝 are equivalent if the constant value 𝑏0 in (58) is equal to 𝑏2 𝑘𝑎𝑝 for 𝑏2254

in (53) and (56).255

From (7)-(11), the corresponding solution for the forced pressure disturbance is256

𝑝′𝑝 (𝑥, 𝑧, 𝑡) = Re{𝑃̂𝑝 (𝑧, 𝑡) 𝑒𝑖𝑘𝑥} = 𝜌0𝑔𝑎𝑝𝑒
𝑘𝑧

(
cos𝜃 − Γ𝑆

𝜎
sin𝜃

)
. (59)

With𝑈 = 𝑖𝑊 = 𝑖 (𝑑𝑍/𝑑𝑡) = 𝜎𝑍 , the downwind and vertical velocities can be written as,257

𝑢𝑝 (𝑥, 𝑧, 𝑡) = 𝜎𝑎𝑝 𝑒𝑘𝑧 cos𝜃, 𝑤𝑝 (𝑥, 𝑧, 𝑡) = 𝜎𝑎𝑝 𝑒𝑘𝑧 sin𝜃. (60)

From the cross-wind momentum balance (𝑑/𝑑𝑡 +Γ𝑆)𝑉 = (−𝑖𝜎 +Γ𝑆)𝑉 = − 𝑓𝑈, it follows that258

𝑣𝑝 (𝑥, 𝑧, 𝑡) = − 𝑓 𝜎𝑎𝑝 (𝜎2 +Γ2
𝑆)

−1 𝑒𝑘𝑧 (Γ𝑆 cos𝜃 −𝜎 sin𝜃). (61)

The surface-conforming mean wave-correlated drift and pressure forcing are then259

𝑢𝑝 = 𝜎𝑎𝑝 × 𝑘𝑎𝑝𝑒2𝑘𝑧 = 𝜎𝑘𝑎2
𝑝 𝑒

2𝑘𝑧, (62)

𝑣𝑝 = − 𝑓 𝜎𝑎𝑝 (𝜎2 +Γ2
𝑆)

−1Γ𝑆 × 𝑘𝑎𝑝𝑒2𝑘𝑧 = −
(

𝑓 Γ𝑆

𝜎2 +Γ2
𝑆

)
𝑢𝑝, (63)

− 1
𝜌0

𝜕𝑝′𝑝
𝜕𝑥

= 𝑔𝑎𝑝
Γ𝑆

𝜎
𝑘 × 𝑘𝑎𝑝𝑒2𝑘𝑧 = Γ𝑆 𝑢𝑝 . (64)

The mean downwind drift depends on the forced free-surface displacement parameters in the same260

way as in the inviscid free-wave case and so is again equivalent to the Lagrangian-mean Stokes261
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drift. The mean cross-wind drift is not zero in the damped case but is of order 𝑓 Γ𝑆/𝜎2 ≪ 1 relative262

to the mean downwind drift. The implicit neglect of the Coriolis force from the mean cross-wind263

drift in the downwind momentum equation is consistent, as it would be of order 𝑓 2/𝜎2 ≪ 1 relative264

to the mean drag and pressure forcing terms.265

As in the inviscid case, it is necessary to consider the second-order nonlinear acceleration terms,266

where the small wave-slope parameter is now 𝑘𝑎𝑝. The spatial-mean nonlinear terms again vanish267

for the downwind momentum balance but not for the cross-wind momentum balance, where now268

𝜕

𝜕𝑧
(𝑣𝑝𝑤𝑝) =

𝑘

2𝜋

∫ 2𝜋/𝑘

0

𝜕

𝜕𝑧

 𝑓 𝑎𝑝
(
1+

Γ2
𝑆

𝜎2

)−1

𝑒𝑘𝑧 sin 𝑘𝑥×𝜎𝑎𝑝𝑒𝑘𝑧 sin 𝑘𝑥
 𝑑𝑥, (65)

so that269

𝜕

𝜕𝑧
(𝑣𝑝𝑤𝑝) =

(
1+

Γ2
𝑆

𝜎2

)−1

𝑓 𝜎𝑘2𝑎𝑝𝑒
2𝑘𝑧 =

(
1+

Γ2
𝑆

𝜎2

)−1

𝑓 𝑢𝑝 ≈ 𝑓 𝑢𝑝, (66)

essentially as in the free-wave case. Thus, an additional mean cross-wind drift 𝑉2 again must270

be allowed in the cross-wind momentum equation, which again will induce a Coriolis force and271

downwind drift 𝑈2 in the downwind momentum equation. In this case, however, the additional272

mean drift (𝑈2,𝑉2) will appear in the drag terms, so that the full forced-damped mean drift equations273

are274

− 𝑓 𝑉2𝑒
2𝑘𝑧 = − 1

𝜌0

𝜕𝑝′𝑝
𝜕𝑥

−Γ𝑆 (𝑢𝑝 +𝑈2𝑒
2𝑘𝑧), 𝑓 (𝑢𝑝 +𝑈2𝑒

2𝑘𝑧) = −Γ𝑆𝑉2𝑒
2𝑘𝑧 . (67)

Defining the mean wave-drift velocity vector as275

U𝑆 = (𝑈𝑆,𝑉𝑆) = (𝑢𝑝 +𝑈2𝑒
2𝑘𝑧,𝑉2𝑒

2𝑘𝑧), (68)

gives the mean forced-damped drift momentum equations as276

− 𝑓 𝑉𝑆 = − 1
𝜌0

𝜕𝑝′𝑝
𝜕𝑥

−Γ𝑆𝑈𝑆, 𝑓𝑈𝑆 = −Γ𝑆𝑉𝑆 . (69)

These equations may be solved for U𝑆, which gives277

U𝑆 = 𝑢𝑝 cos𝛾𝑆 (cos𝛾𝑆,−sin𝛾𝑆), (70)
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where the rotation angle from downwind is278

𝛾𝑆 = arctan
(
𝑓

Γ𝑆

)
. (71)

If the equilibrium-sea timescale 𝑇𝑆 ≈ 1/Γ𝑆 is a substantial fraction of the inertial timescale 1/ 𝑓 ,279

then the resulting rotation of the mean wave-drift from downwind, 𝛾𝑆 ≈ arctan( 𝑓 𝑇𝑆), will likewise280

be substantial. The magnitude of the vector drift will then also be reduced by the factor | cos𝛾𝑆 | < 1.281

4. Equilibrium-sea timescales and Stokes drift angle282

a. Monochromatic forced-damped estimate283

An estimated equilibrium-sea equilibration timescale𝑇𝑆 can be obtained from the monochromatic284

forced-damped solution (55)-(60) by setting 𝑇𝑆 = 1/Γ𝑆 and equating the mean squared amplitude285

1
2𝑎

2
𝑝 to observed estimates 𝜁2 of mean squared displacements for equilibrium-sea conditions. From286

(56) with 𝑏0 = 𝑏2𝑘𝑎𝑝, or from (58), and with 𝜎 = 𝑔/𝑐, the resulting equilibration timescale is,287

𝑇𝑆 =
1
Γ𝑆

=
𝜌0𝑔𝜁2

𝑏0𝑐𝜏0
. (72)

The resulting inferred damping rate Γ𝑆 = 1/𝑇𝑆 is equivalent to the standard expression for wave288

growth rate obtained as the ratio of the rate of wave energy growth with time, 𝑑𝐸/𝑑𝑡 = 𝑏0𝑐𝜏0, to289

the wave energy, 𝐸 = 1
2𝜌0𝑔𝑎

2
𝑝 = 𝜌0𝑔𝜁2.290

To obtain numerical estimates of Γ𝑆 and 𝑇𝑆, representative values of the stress fraction 𝑏0 and291

phase speed 𝑐 (or, equivalently, the transfer velocity 𝑏0𝑐) and 𝜁2 must be specified as a function of292

the 10-m wind speed𝑈10𝑁 . A simple approach is to let 𝑎𝑝 = (2𝜁2)1/2 = 𝐻𝑠/2 and 𝑐 = 𝑐𝑝, where the293

equilibrium-sea significant wave-height 𝐻𝑠 (𝑈10𝑁 ) and peak-wavelength phase speed 𝑐𝑝 (𝑈10𝑁 ) are294

taken from the Samelson (2022) fully-developed sea and bulk-flux wave state relations (Fig. 1a-g).295

For 𝑏0 as in (53) with 𝑏2 = 5 as suggested by the measurements of Buckley et al. (2020), the296

resulting equilibrium-sea timescale,297

𝑇𝑆 (𝑈10𝑁 ) =
1
8𝜌0𝑔𝐻

2
𝑠

𝑏0𝑐𝑝𝜏0
(73)
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Fig. 1. Parameters vs. 10-m neutral wind speed (m s−1) for 𝑇𝑆 values from (73) computed for fully-developed

sea (thick line) and bulk-flux (thin) wave states from Samelson (2022): (a) total wind stress 𝜏0, (b) wave-forcing

wind-stress fraction 𝑏0𝜏0, (c) wind stress fraction 𝑏0 = 𝑏2𝑘𝑎 from (53) with 𝑏2 = 5, (d) wave amplitude 𝑎𝑝 =𝐻𝑠/2,

(e) spectral-peak wavelength 𝜆𝑝, (f) wave slope 𝑘𝑎, (g) spectral-peak wavenumber 𝑘 𝑝, (h) equilibration timescale

𝑇𝑆 , (i) mean wave-drift rotation angle 𝛾𝑆 = arctan( 𝑓 𝑇𝑆).

301

302

303

304

305

is a substantial fraction of the mid-latitude inertial timescale 1/ 𝑓 for𝑈10𝑁 > 3 m s−1 (Fig. 1h), and298

the implied rotation of the mean wave-drift from downwind, 𝛾𝑆 = arctan( 𝑓 𝑇𝑆), can be several tens299

of degrees or more at mid-latitudes (Fig. 1i).300

A Lagrangian wave-drift momentum timescale estimate, consistent with (72), can be obtained306

from time-dependent Lagrangian-mean expressions derived by Pizzo and Wagner (2025) in their307

asymptotic analysis of wave growth from pressure forcing for the non-rotating case. Equating their308

second-order drift (Pizzo and Wagner 2025, their eq. 52), which grows quadratically in time, to the309

standard Stokes drift 𝜖2𝜔𝑘𝑎2𝑒2𝑘𝑧 for their wave amplitude 𝜖𝑎, with 𝑃𝑎0 = 2𝑏0𝜏0/(𝑘𝜖𝑎) from (51),310

gives a timescale311

𝑇𝐿 =
𝜖𝑎

𝜖A𝜔 =
𝜖𝑎

(2𝑔𝜌0)−1𝑃𝑎0(𝑔𝑘)1/2 =
2𝜌0𝑔

1/2𝜖𝑎

𝑘1/2𝑃𝑎0
= 2𝑇𝑆, (74)
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where, as in Pizzo and Wagner (2025), 𝜖A = 𝑃𝑎0/(2𝑔𝜌0) is an equivalent vertical free-surface312

displacement for the pressure forcing and the dimensionless small parameter 𝜖 has been introduced313

to scale the wave amplitude and the pressure forcing. The factor of 2 difference between (74) and314

(72) evidently arises because the Pizzo and Wagner (2025) pressure forcing incorporates the growth315

of the wave amplitude from a small value, whereas (72) uses an equilibrated wave amplitude.316

b. Empirical wave-growth estimate317

Observations of growing wind-driven waves with wavenumber 𝑘 are generally consistent with318

the growth rate suggested by Plant (1982), denoted here by 𝛽𝑘 :319

𝛽𝑘 ≈ 0.04
𝑣2
∗
𝑐2 𝜎. (75)

In (75), 𝑐/𝑣∗ is the wave-age parameter and 𝑣∗ = (𝜏0/𝜌𝑎)1/2 is the air friction velocity for air density320

𝜌𝑎. In an equilibrium sea, the mean rates of energy input and loss for waves in the equilibrium range321

must be approximately equal, differing only by the spectral flux of energy between wavenumbers322

within the range (Phillips 1985). Thus, the wave growth rate 𝛽𝑘 can be taken as an empirical323

estimate of the damping rate Γ𝑆, giving a spectral equilibrium-sea timescale 𝑇𝑘 as324

𝑇𝑘 =
1
𝛽𝑘

= 25
𝑐2

𝑣2
∗

1
𝜎

= 25𝑣−2
∗ 𝑔

1/2𝑘−3/2. (76)

The spectral flux may have magnitude as large as one-third of the wind input in the equilibrium325

range (Ardhuin et al. 2010) but the growth and dissipation rates will still be similar enough that 𝑇𝑘326

may be taken here as an estimate of both timescales.327

The spectral timescale 𝑇𝑘 is generally smaller than 𝑇𝑆 computed for the monochromatic model,328

but can still be a substantial fraction of the mid-latitude inertial timescale 1/ 𝑓 . Thus, for Γ𝑆 = 1/𝑇𝑘 ,329

the resulting clockwise rotation angle 𝛾𝑘 , where330

𝛾𝑘 = arctan( 𝑓 𝑇𝑘 ), (77)

of the mean wave-drift from downwind can be up to several tens of degrees at mid-latitudes (Fig. 2).331
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Fig. 2. (a,c,e) Base-10 logarithm of spectral timescale 𝑇𝑘 in units of hours and (b,d,f) clockwise wind-

relative Stokes drift angle 𝛾𝑘 = arctan( 𝑓 𝑇𝑘) for Coriolis parameter 𝑓 at 40◦N for damping on spectral timescale

𝑇𝑘 vs. 10-m wind speed and (a,b) wavenumber 𝑘 , (c,d) wavelength 𝜆𝑘 = 2𝜋/𝑘 , and (e,f) Stokes-drift depth

𝛿𝑠 = 1/(2𝑘) = 𝜆𝑘/(4𝜋). Values are shown for wavelengths less than the Resio et al. (1999) fully-developed sea

spectral-peak wavelength.

332

333

334

335

336

c. Mean wave drift angles and profiles337

In the monochromatic equilibrium-sea model, the total wind-sea drift is represented by the338

single drift veloctity profile U𝑆 (70) at the wavelength 𝑘 𝑝, corresponding to the spectral peak at339

the long-wavelength end of the equilibrium wind-sea spectral range. This drift velocity profile is340

rotated by the angle 𝛾𝑘 , which is independent of depth and to the right of the wind in the Northern341

Hemisphere. The peak wavelength 𝜆𝑝 and phase speed 𝑐𝑝 used for the monochromatic timescale𝑇𝑆342

(73) are, effectively, upper bounds for the corresponding quantities in the spectral estimate 𝑇𝑘 (76),343

because the peak wavelength and phase speed are at the long-wavelength limit of the equilibrium344

wind-sea spectral range. Thus, the monochromatic rotation angle 𝛾𝑆 is also effectively an upper345

bound for the rotation angles of the drift in the spectral equilibrium wind-sea range.346
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In the spectral representation, the timescale 𝑇𝑘 and rotation angle 𝛾𝑘 are different for each347

wavenumber 𝑘 in the equilibrium range, with longer timescales and larger rotation angles for longer348

waves. The drift vertical decay scale 𝛿𝑆 = 1/(2𝑘) = 𝜆/(4𝜋) increases linearly with wavelength,349

so the rotation angle increases as the vertical decay scale increases. With the forced-damped350

drift balance (70) taken to hold at each wavenumber 𝑘 , the solution may be interpreted as a351

spectral density by setting the squared amplitude 𝑎2
𝑝 in the scalar drift 𝑢𝑝 from (62) equal to352

twice the wavenumber spectrum Ψ(𝑘) of mean-square displacement. With Ψ(𝑘) taken as the353

two-dimensional equilibrium-range spectrum from Phillips (1985) integrated over direction 𝜃, the354

equilibrium spectra 𝑢̂𝑝 (𝑧; 𝑘) and Û𝑆 (𝑧; 𝑘) of the scalar and vector wave drift are355

𝑢̂𝑝 (𝑧; 𝑘) = 2𝜎 𝑘Ψ(𝑘)𝑒2𝑘𝑧 = 2 𝛽 𝐼 (𝑝) 𝑣∗ 𝑘−2𝑒2𝑘𝑧 (78)

Û𝑆 (𝑧; 𝑘) = = 2 𝛽 𝐼 (𝑝) 𝑣∗ 𝑘−2 cos𝛾𝑘 𝑒2𝑘𝑧 (cos𝛾𝑘 ,−sin𝛾𝑘 ), (79)

where 𝐼 (𝑝) =
∫ 𝜋/2
−𝜋/2 cos𝑝 𝜃 𝑑𝜃. The total mean vector drift profile (Fig. 3,4) is then the spectral356

integral357

Ū𝑆 (𝑧) =
∫ 𝑘1

𝑘0

Û𝑆 (𝑧; 𝑘) 𝑘 𝑑𝑘 = 2 𝛽 𝐼 (𝑝) 𝑣∗
∫ 𝑘1

𝑘0

𝑘−1 cos𝛾𝑘 𝑒2𝑘𝑧 (cos𝛾𝑘 ,−sin𝛾𝑘 ) 𝑑𝑘, (80)

where 𝑘0 and 𝑘1 are the limits of the equilibrium range and358

𝛾𝑘 = arctan( 𝑓 𝑇𝑘 ) = arctan(25 𝑓 𝑣−2
∗ 𝑔

1/2𝑘−3/2). (81)

For wind speeds above 10 m s−1, the magnitude of the total mean vector subsurface drift (80)359

is attenuated by the rotation, relative to the total scalar drift 𝑈 𝑝 =
∫ 𝑘1
𝑘0
𝑢̂𝑝 𝑘 𝑑𝑘 obtained from the360

integral over the equilibrium wavenumber range of 𝑢̂𝑝 (𝑧; 𝑘) from (78). The attenuation is depth-361

dependent and can be of order 10%-20% in the upper 5 meters (Fig. 3). Note that different362

representations of the equilibrium range spectrum result in different estimates of the amplitude of363

the drift; for example, the integrated scalar drift𝑈 𝑝 is only half as large as the scalar drift estimate364

from the Breivik et al. (2014) analytical integral of the Phillips (1958) 𝜎−5 equilibrium spectrum365

(Fig. 3a-e).366
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Fig. 3. (a-e) Vector mean Stokes drift magnitude |U𝑆 | (blue solid lines) from (80), with corresponding

integrated scalar drift𝑈 𝑝 (blue dashed) and (f-j) clockwise wind-relative mean drift angle 𝛾𝑘 = arctan( 𝑓 𝑇𝑘) from

(81) for Coriolis parameter 𝑓 at 40◦N and damping on spectral timescale 𝑇𝑘 vs. depth, for 10-m wind speeds

(a,f) 4, (b,g) 7, (c,h) 11, (d,i) 16, (e,j) 20 m s−1. The scalar drift profiles from the Breivik et al. (2014) analytical

integral of the Phillips (1958) 𝜎−5 equilibrium spectrum are also shown (green lines in a-e).

371

372

373

374

375

Fig. 4. Clockwise wind-relative angle (◦) of vector mean surface Stokes drift U𝑆 from (80) vs. 10-m wind

speed and Northern Hemisphere latitude.

376

377

The rotation angle increases with wind speed for wind speeds below approximately 7 m s−1
367

and then is essentially constant for larger wind speeds (Figs. 3,4b). The magnitude of the rotated368

surface drift is essentially independent of latitude (Fig. 4a) but the rotation angle increases poleward,369

reaching values of 7◦ to 12◦ at subtropical latitudes and up to 15◦ at high latitudes (Fig. 4b).370
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5. Equilibrium-sea wind and wave drift378

The form of the linear damping terms assumed in (1)-(3) implicitly assumes that surface wave-379

breaking results in a breakdown of the coherent vertical wave structure, the result of which is to380

remove the mean drift momentum directly at each depth from the associated wave structure. This381

flux of momentum out of the wave field at each depth can then consistently be taken to provide a382

depth-dependent body force that can be inserted as a forcing term into an equilibrium-sea wind-drift383

model, such as that proposed by Samelson (2022), conserving the total momentum in the combined384

wave and wind flow. All of the surface stress would then ultimately be deposited as momentum385

flux into the mean wind drift but the resulting wind-drift and total drift profiles will be different386

than would be obtained by forcing the wind-drift model alone with the full surface stress. From387

a physical point of view, the body force from the linear wave-drift damping acts to distribute the388

surface momentum flux into the near-surface interior through a coherent wave-pressure mechanism389

rather than turbulence.390

An explicit model of the combined equilibrium-sea wind drift and linear-drag wave drift can be391

constructed by combining the forced-damped wave analysis with the wind-drift model of Samelson392

(2022), with the latter supplemented by the mean-flow forcing from the linear drag. If the usual393

wave-averaging assumption is made, according to which the turbulence is effectively frozen on394

the wave timescale and has no effect on the wave dynamics, then the wave-drift and wind-drift395

momentum balances can be treated separately. If the fraction 𝑏0 of the total surface wind stress396

that is deposited into the wave field is given, then the rotating wave-drift balance (70) or (80) can397

be solved to obtain both the wave drift and the momentum flux from the linear damping of the wave398

drift. Wind-drift model equations, such as those of Samelson (2022), can then be solved, forced399

by the remaining fraction 1− 𝑏0 of the wind stress at the surface and by the body force that derives400

from the linear damping of the wave drift. The total drift will consist of the sum of the wave and401

wind drifts. An outline of an implementation of this approach and two resulting example sets of402

combined wind-drift and wave-drift profiles are presented here.403

The first step is to compute the rotating equilibrium-sea wave-drift profiles as a function of wind404

speed. The particular implementation chosen for the examples presented here used the spectral form405

(78)-(81). The lower limit 𝑘0 of the spectral integral (80) was specified as the peak wavenumber406

𝑘 𝑝 = 2𝜋/𝜆𝑝 of the fully-developed sea wave-state considered by Samelson (2022), which used the407
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parameterization developed by Resio et al. (1999). The Resio et al. (1999) peak wavelength was408

used directly, without the adjustment considered by Samelson (2022), so that409

𝑘0 =
2𝜋
𝜆𝑝

=
𝑔

𝑈2
𝑟

, 𝜆𝑝 = 2𝜋
𝑈2
𝑟

𝑔
, 𝑈𝑟 = 0.516 (𝑈10𝑁 )1.244 . (82)

The upper integration limit 𝑘1 was set in a plausible but ad-hoc manner to satisfy the condition410

that the total parameterized wave-breaking drag was less than the wind stress, i.e., to guarantee411

𝑏0 < 1. The profile of pressure forcing on the wave field was computed from (64) and (78) as the412

spectral integral413

𝐹𝑤 (𝑧) =
∫ 𝑘1

𝑘0

ˆ
− 1
𝜌0

𝜕𝑝′𝑝
𝜕𝑥

(𝑧; 𝑘) 𝑘 𝑑𝑘 =
∫ 𝑘1

𝑘0

Γ𝑘 𝑢̂𝑝 (𝑧; 𝑘) 𝑘 𝑑𝑘, (83)

where Γ𝑘 = 1/𝑇𝑘 and the value 𝛽𝐼 (𝑝) = 3 × 10−2 was used in (78), which is consistent with414

values considered by Phillips (1985) for 𝑝 = 1
2 and with the observational estimates 𝛽 ≈ 0.012 and415

𝐼 (𝑝) ≈ 2.5 (Juszko et al. 1995; Thomson et al. 2013) . Recent observations tend to suggest larger416

values of 𝑝, such as 𝑝 = 1 or 𝑝 = 2, but these will generally imply smaller values of 𝛽𝐼 (𝑝) and417

a smaller wave-drift component, so the smaller value of 𝑝 and larger value of 𝛽𝐼 (𝑝) are retained418

here. The total pressure forcing 𝐹𝑤0 on the wave field is the vertical integral of 𝐹𝑤 (𝑧),419

𝐹𝑤0 =

∫ 0

−∞
𝐹𝑤 (𝑧) 𝑑𝑧, (84)

and the fraction 𝑏0 of wind-stress deposited into the wave-field by the wave-correlated pressure420

forcing is421

𝑏0 =
𝐹𝑤0
𝜏0
. (85)

For physical consistency, it is necessary to require 𝑏0 < 1. This requirement was enforced by422

imposing an ad-hoc linear dependence of the high-wavenumber integration limit on the 10-m wind423

speed,424

𝑘1 = 0.15×𝑈10𝑁 for units [𝑘1,𝑈10𝑁 ] = [m−1,m s−1] . (86)

This results in a value of 𝑏0 that is roughly proportional to𝑈10𝑁 , with 𝑏0 ≈ 0.8 at𝑈10𝑁 = 20 m s−1
425

(Fig. 5).426
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Fig. 5. (a) Wave-forcing wind-stress fraction 𝑏0 and (b) spectral integral short-wave limit 𝜆𝑘0 = 2𝜋/𝑘0 vs. 10-m

wind speed for the wave-drift solutions used for the combined wind-drift and wave-drift model solutions.

427

428

The corresponding profile of wave-breaking drag from the rotating equilibrium-sea wave-drift429

equations (69) was computed as the spectral integral430

𝜏𝑏𝑟 (𝑧) = −
∫ 𝑘1

𝑘0

Γ𝑘Û𝑆 (𝑧; 𝑘) 𝑘 𝑑𝑘 = −
∫ 𝑘1

𝑘0

1
𝑇𝑘

Û𝑆 (𝑧; 𝑘) 𝑘 𝑑𝑘, (87)

where in (79), the value 𝛽𝐼 (𝑝) = 3× 10−2 was again used. For simplicity, the nonlinear spectral431

momentum fluxes into and within the equilibrium range were neglected. To conserve momentum432

in the combined wave-drift and wind-drift system, the rate of momentum gained by the mean drift433

must then be equal to that lost from the wave field by breaking, so that the effective body force in434

the mean wind-drift equations F𝑏𝑟 is equal and opposite to 𝜏𝑏𝑟 ,435

F𝑏𝑟 (𝑧) = −𝜏𝑏𝑟 (𝑧). (88)

As solved here, the resulting model equations of Samelson (2022) for the mean wind-drift436

U = (𝑈,𝑉), modified to include the forcing F𝑏𝑟 = (𝐹𝑥
𝑏𝑟
, 𝐹

𝑦

𝑏𝑟
) from the parameterized wave-breaking437

drag, take the form438

− 𝑓 𝑉 =
𝑑

𝑑𝑧

[
𝜙𝑤𝜅𝑢∗(𝑧0 − 𝑧)

𝑑𝑈

𝑑𝑧

]
+𝐹𝑥𝑏𝑟 (𝑧), (89)

𝑓𝑈 =
𝑑

𝑑𝑧

[
𝜙𝑤𝜅𝑢∗(𝑧0 − 𝑧)

𝑑𝑉

𝑑𝑧

]
+𝐹𝑦

𝑏𝑟
(𝑧). (90)
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Here the wave-correction factor 𝜙𝑤 and effective roughness length 𝑧0 are functions of 𝑈10𝑁 as439

specified by Samelson (2022), 𝜅 is the von Kàrmàn constant, and 𝑢∗ = (𝜏0/𝜌0)1/2 is the water440

friction velocity. The uniform proportionality of the eddy viscosity in (89)-(90) to 𝑧0− 𝑧 simplifies441

the solution of (89)-(90), relative to the piecewise-continuous eddy viscosity from Samelson (2022),442

with minimal effect on the solution structure for the cases considered here.443

With the definitions444

𝑊 =𝑈 + 𝑖𝑉, 𝑊𝐹 =
1
𝑓
(𝐹𝑦

𝑏𝑟
− 𝑖𝐹𝑥𝑏𝑟), 𝜉 = (1+ 𝑖)

[
2 𝑓

𝜙𝑤𝜅𝑢∗
(𝑧0 − 𝑧)

]1/2
, (91)

the equations (89)-(90) may be rewritten as445

𝑑2𝑊

𝑑𝜉2 + 1
𝜉

𝑑𝑊

𝑑𝜉
−𝑊 = −𝑊𝐹 , (92)

and solved in terms of the modified Bessel functions𝐾0(𝜉) and 𝐼0(𝜉), as shown for the homogeneous446

case (𝑊𝐹 = 0) by Ellison (1956) and described in the appendix of Samelson (2022). A particular447

solution𝑊𝑝,448

𝑊𝑝 (𝜉) = 𝐴𝑝 (𝜉)𝐾0(𝜉) +𝐵𝑝 (𝜉) 𝐼0(𝜉), (93)

𝐴𝑝 (𝜉) =

∫ 𝜉

𝜉∞

𝜉′ 𝐼0(𝜉′)𝑊𝐹 (𝜉′) 𝑑𝜉′, (94)

𝐵𝑝 (𝜉) = −
∫ 𝜉

𝜉∞

𝜉′𝐾0(𝜉′)𝑊𝐹 (𝜉′) 𝑑𝜉′, (95)

where 𝜉∞ denotes the limit 𝜉 (𝑧→−∞), may be obtained by variation of parameters.449

The full solution𝑊 , which consists of the sum of the particular solution𝑊𝑝 and a homogeneous450

solution𝑊ℎ, must satisfy𝑊 → 0 as 𝑧→−∞ and the surface stress condition,451

−𝜙𝑤𝜅𝑢∗𝑧0
𝑑𝑊

𝑑𝑧

����
𝑧=0

= −(1− 𝑏0)𝑢2
∗, (96)

where 1− 𝑏0 is the fraction of downward wind stress 𝜏0 = 𝜌0𝑢
2
∗ transferred directly to the mean452

wind-drift. The first of these boundary conditions requires that 𝑊ℎ = 𝐴ℎ𝐾0 and the second then453
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determines 𝐴ℎ:454

𝐴ℎ = (1− 𝑏0)𝐴− 𝐴𝑝 (𝜉0) +𝐵𝑝 (𝜉0)
𝐼1(𝜉0)
𝐾1(𝜉0)

, (97)

where455

𝐴 =

(
𝑢3
∗

𝑓 𝜙𝑤𝜅𝑧0

)1/2
𝑒−𝑖

𝜋
4

𝐾1(𝜉0)
(98)

and456

𝜉0 = 𝜉 |𝑧=0 = (1+ 𝑖)
(

2 𝑓 𝑧0
𝜙𝑤𝜅𝑢∗

)1/2
, (99)

as in equations (A2) and (A3) of the appendix of Samelson (2022). The full solution of the457

wave-forced wind-drift model is then458

𝑊 (𝜉) =𝑈 (𝜉) + 𝑖𝑉 (𝜉) = [𝐴ℎ + 𝐴𝑝 (𝜉)]𝐾0(𝜉) +𝐵𝑝 (𝜉) 𝐼0(𝜉), (100)

which can be written in vector form and as a function of depth 𝑧 as459

W(𝑧) = [𝑈 (𝑧),𝑉 (𝑧)], 𝑈 (𝑧) = Re{𝑊 [𝜉 (𝑧)]}, 𝑉 (𝑧) = Im{𝑊 [𝜉 (𝑧)]}, (101)

where Re{·} and Im{·} denote the real and imaginary parts, respectively.460

The total combined mean equilibrium-sea wind-drift and wave-drift vector U𝑚 is the sum of the468

vector wind-drift W from (101) and the spectral-integral vector wave-drift U𝑆 from (80):469

U𝑚 (𝑧) = W(𝑧) +U𝑆 (𝑧). (102)

Relative to the wind-drift-only solution obtained by setting 𝑏0 = 𝐴𝑝 = 𝐵𝑝 = 0 in (97) and (100),470

which is essentially equivalent at a given𝑈10𝑁 to the corresponding solution obtained by Samelson471

(2022), the wave forcing and drift cause modest but systematic changes to the total mean drift472

profile (Figs. 6,7). The main changes are an increase in near-surface shear and a decrease in the473

cross-wind component of drift for the total mean drift relative to the wind-drift-only solutions.474

These differences increase with wind speed. The near-surface shear difference is dependent on475

the particular choice of parameterizations 𝜙𝑤 (𝑈10𝑁 ) and 𝑧0(𝑈10𝑁 ) for the wind-drift model. The476

pressure-forcing fractions 𝑏0 of total wind stress for these solutions were 𝑏0 = 0.27 for𝑈10𝑁 = 7 m477

s−1 (Fig. 6) and 𝑏0 = 0.63 for𝑈10𝑁 = 16 m s−1 (Fig. 7).478
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Fig. 6. Profiles of (a,c,e,g) magnitude and (b,d,f,h) clockwise wind-relative angle of total wind and wave

drift U𝑚 from (102) (blue lines) and corresponding wind-drift-only (green) profiles vs. (a-d) 10-based logarithm

of depth 𝑧 (m) and (e-h) depth 𝑧 (m) for 𝑈10𝑁 = 7 m s−1 and Coriolis parameter 𝑓 computed at 40◦ N. The

profiles are shown for two different parameterizations of the wind-drift model wave-correction factor 𝜙𝑤 (𝑈10𝑁 )

and roughness length 𝑧0(𝑈10𝑁 ): “p1” (a,b,e,f) is the “monochromatic” parameterization described by Samelson

(2022) and “p3” (c,d,g,h) is the adjusted version of p1 described by Leyba et al. (In preparation). The wave-drift

U𝑆 (dashed red) and wave-forced wind-drift W (solid red) components of U𝑚 from (102) are also shown.

461

462

463

464

465

466

467

Fig. 7. As in Fig. 6 but for𝑈10𝑁 = 16 m s−1.
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6. Stokes drift budget for wave-averaged Langmuir circulation modeling479

The steady rotating wave-drift equations (69) can be extended to a time-dependent system in480

a straightforward, if ad-hoc, way by restoring the time rates of change (𝑑𝑈𝑆/𝑑𝑡, 𝑑𝑉𝑆/𝑑𝑡) in the481

mean-drift momentum balance. The resulting time-dependent horizontal momentum equations for482

the surface-conforming mean wave drift in the rotating case are:483

𝑑𝑈𝑆

𝑑𝑡
− 𝑓 𝑉𝑆 = − 1

𝜌0

𝜕𝑝′𝑝
𝜕𝑥

−Γ𝑆𝑈𝑆 = −Γ𝑆 (𝑈𝑆 −𝑢𝑝), (103)

𝑑𝑉𝑆

𝑑𝑡
+ 𝑓𝑈𝑆 = −Γ𝑆𝑉𝑆, (104)

where from (51), (55), and (62),484

𝑢𝑝 = 𝜎𝑘𝑎
2
𝑝 𝑒

2𝑘𝑧 . (105)

This approach implicitly assumes that the wind forcing changes slowly relative to the equilibrium-485

sea timescales 𝑇𝑆 and 𝑇𝑘 , which are typically on the order of a few hours or less, except at the486

longer wavelengths for strong wind forcing.487

As in the steady case, the damping coefficient Γ𝑆 in (103)-(104) and the equilibrium-sea wave488

parameters 𝜎, 𝑘 , and 𝑎𝑝 in (105), which determine the momentum forcing in (103), may be viewed489

or specified either monochromatically, for a single wave representing the equilibrium conditions,490

or spectrally, as a function of wavenumber in the equlibrium range. In the monochromatic case,491

with 𝑎𝑝 as in (58) with Γ𝑆 = 𝛽𝑘 , (105) can be written492

𝑢𝑝 =

(
2𝑘𝑏0𝜏0
𝜌0𝛽𝑘

)
𝑒2𝑘𝑧 . (106)

In the spectral case, 𝑢𝑝 will take a spectral density form as in (78), and the resulting solution493

Û𝑆 (𝑡; 𝑧, 𝑘) of (103)-(104) will represent a spectral density that must be integrated over the equilib-494

rium range to obtain the vector mean drift, as in (80).495

In either case, the result of this extension is a time-dependent momentum budget for the Stokes496

drift. In principle, this budget could be used in conjunction with the standard wave-averaged497

Boussinesq system to model, for example, Langmuir circulation dynamics under equilibrium-sea498

conditions with slowly varying wind forcing. Such a budget equation has not been previously499
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available; instead, a time-dependent Stokes-drift forcing has typically been inserted into the wave-500

averaged system without regard to the associated momentum conservation balances. In this setting,501

it seems likely that it may again be appropriate to apportion the wind stress forcing between the502

mean drift and wave-averaged equations and then to include the wave-drift damping term again as503

a body force in the wave-averaged equations.504

A more rigorous approach may be possible through a Helmholtz-like decomposition of the505

velocity field, in which the wave velocity field is represented as a potential flow in the downwind-506

vertical plane plus a cross-wind component of higher order that can be written as a functional𝑉 [𝜙]507

of the downwind-vertical potential 𝜙(𝑥, 𝑧) and the turbulent component is written in terms of a508

vector potential H = (𝐻𝑥 , 𝐻𝑦, 𝐻𝑧):509

u = (𝑢, 𝑣,𝑤) =
(
𝜕𝜙

𝜕𝑥
,𝑉 [𝜙], 𝜕𝜙

𝜕𝑧

)
+

(
𝜕𝐻𝑧

𝜕𝑦
− 𝜕𝐻

𝑦

𝜕𝑧
,
𝜕𝐻𝑥

𝜕𝑧
− 𝜕𝐻

𝑧

𝜕𝑥
,
𝜕𝐻𝑦

𝜕𝑥
− 𝜕𝐻

𝑥

𝜕𝑦

)
. (107)

Following the outline of the explicit linear solution in Sections 2 and 3, the linear potential-510

flow wave solution and associated second-order wave drift balance would be developed from the511

divergence of the momentum balance in the downwind-vertical plane. From (2), the functional512

𝑉 [𝜙] should take the form513

𝑉 [𝜙] = 𝑒−Γ𝑆 𝑡
∫ 𝑡

𝑒Γ𝑆 𝑡
′ 𝜕𝜙

𝜕𝑥
𝑑𝑡′, (108)

where the separation of the wave-coherent component𝑉 [𝜙] from the turbulent cross-wind velocity514

may be motivated by ensemble averaging for random fields or other similar arguments. The curl of515

the three-dimensional momentum balance should yield equations for the turbulent component that516

can be averaged over the wave timescale, with the usual wave-averaging assumptions, to obtain the517

vortex-force or equivalent wave-turbulent interactions terms that drive Langmuir circulations.518

Such an approach seems plausible but is beyond the scope of the present study, the main goal519

of which was to extend the semi-empirical, equilibrium-sea wind-drift model of Samelson (2022)520

to include explicit representation of the wave-drift component, as described in Section 5. In that521

extended semi-empirical model, all turbulent dynamics including any Langmuir wave-turbulence522

interaction components are represented only in mean, implicit, parameterized form, through the523

depth-dependent eddy viscosity terms in (89)-(90).524
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7. Summary525

The simple physical representation of wave-breaking dissipation assumed in this work provides526

qualitative insight into the potential effect of the Earth’s rotation on near-surface wave-drift.527

The associated forced-damped solutions suggest that the mean equilibrium-sea wave-drift will be528

rotated away from the downwind direction in the Ekman-rotation sense, with larger rotation for the529

longer-wavelength drift components that extend to greater depths and less rotation for the shorter-530

wavelength components that are trapped closer to the surface. This perhaps surprising result can be531

understood as a damped-wave modification of the Hasselmann (1970) near-inertial component of532

the inviscid rotating-wave drift dynamics, in which the Hasselmann (1970) homogeneous-solution533

inertial balance is replaced by a steady rotation that is controlled by the damping timescale.534

The rotating equilibrium-sea wave and wind drift model constructed by combining the rotating535

wave-drift model and the Samelson (2022) wind-drift model, with the wind-drift model supple-536

mented by the implied flux of momentum from the wave field into the mean flow, gives a modified537

picture of the total wave and wind drift under equilibrium conditions. In the combined model,538

the predicted rotation from downwind of the total subsurface drift is again in the Ekman sense539

but is reduced from that predicted by the wind-drift model alone. These results primarily rely on540

basic physical balances and simple but arguably plausible assumptions regarding the qualitative541

and, in part, quantitative characteristics of the rotating equilibrium-sea dynamics. Among the542

important uncertainties are the extent to which the linear wave-damping is representative of the543

momentum-flux processes associated with wave dissipation and breaking and the extent to which544

the wave and mean drift dynamics can be separately modeled and then combined, as is assumed545

for the combined wave and wind drift model.546

An alternative hypothesis regarding the momentum distribution from surface wave-breaking is547

that it is deposited at or very close to the surface (e.g., Craig and Banner 1994; Sullivan et al.548

2004). If the wave-breaking momentum is deposited into the mean flow at the surface, then all the549

wind momentum is effectively transferred to the mean flow at the surface in the equilibrium-sea550

regime, because the mean momentum transport into the wave field must be equal to the transport551

out of the wave field and into the mean flow. In that case, the momentum distribution from surface552

wave-breaking is effectively represented in the equilibrium-sea wind-drift model as formulated553

by Samelson (2022), which is driven at the surface by the full wind stress and does not include554
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any subsurface forcing that might be associated with wave-dynamical processes. From this point555

of view, the explicit wave-drift model presented here and the wind-drift model as formulated by556

Samelson (2022) can be interpreted as two extreme members of a range of hypotheses regarding557

the vertical distribution of the momentum deposition from surface wave-breaking. The linear drag558

considered here then represents the assumption of subsurface deposition over the full depth extent559

of the mean wave drift. Note that in the numerical experiments of Sullivan et al. (2004), the560

wave-breaking momentum deposited at or very close to the surface was rapidly mixed vertically,561

suggesting a qualititative consistency with the linear-damping body-force representation even in562

that case.563

The question of separability of mean wave and wind drift dynamics is relevant also for the564

extension of these ideas to models of wave-turbulence interaction, including the formulation of565

wave-averaged equations for the modeling of Langmuir circulations. An additional and perhaps566

more fundamental uncertainty is the extent to which linear theory accurately captures near-surface567

ocean wave drift, with or without rotation, as direct measurements of wave drift that might568

show agreement with or departure from kinematic predictions of Stokes drift based on observed569

surface-wave conditions are generally not available. Work in progress that will be described570

elsewhere (Leyba et al. In preparation) has demonstrated significant skill of the Samelson (2022)571

wind-drift model, based on comparisons with an extensive surface-velocity dataset from a recent572

observational program (Farrar et al. 2025), which provides support for some of the basic ideas573

and model formulations that provide the context for the present study. Further work on these and574

related topics is merited and should help to clarify the physical basis and implications of these575

suggestive results.576
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