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Preface

There is a long history of interaction of mathematics with climate dynamics going
back to the pioneering work of John von Neumann and his school in the 1950s
and 1960s. More recently mathematical, statistical and numerical developments
are stimulating a deepening and broadening of the central concerns of climate
dynamic. The purpose of this interdisciplinary summer school was to bring
together graduate students and young researchers on the one hand, and, on the
other hand specialists of meteorology and oceanography, and applied
mathematicians interested in geophysical fluid dynamics (GFD). The ojective was
firstly to initialize or further develop the communication and interactions between
specialists of different fields working on diverse frontiers of GFD, and to discuss
new ideas and methods that will advance the field in the next decade.

The second objective was to equip the students in these fields with the
necessary tools and to bring them to the frontiers of this challenging and
important area. In particular to expose advanced students and young
researchers in one field to basic concepts and tools of the other field, and as well
to advanced developments in their own field.

The summer school consisted of background pedagogical lectures, invited
lectures and informal discussions. The complete list of courses, lectures and
seminar is given below.

This volume contains the lecture notes provided by the lecturers or based on
notes taken by the students. We believe that this volume will be a useful to those
who attended and to those who could not attend.

The coordinators want to thank all those who contributed to the organization and
to the success of this school, the speakers and the participants, and of course
the staff at NCAR, Barbara Hansford, Judy Miller, Scott Briggs and Barbara
Petruzzi for the proceedings. We thank also the sponsoring institutions, the
Division of Mathematical Sciences and the Geoscience Division of the National
Science Fundation (NSF), the Institute for Mathematics and Aplications (IMA),
the National Center for Atmospheric Research (NCAR), and Indiana University.

Roger Temam, Joe Tribbia, and Shouhong Wang, Coordinators
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Functional analysis- R. Temam: Basic functional analysis, relations with
conservation of energy and stability issues. .Infinite dimensional dynamical
systems theory (crucial for putting geophysical models in the perspective
of infinite dimensional dynamical systems).

Stochastic mathematics applied fo the ocean and atmosphere- C. Penland
and B. Ewald

Computational methods:

O

Computational and numerical methods in atmoshphere and ocean —
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Numerical methods and closure Implicit methods- L. Margolin: Relations
and applications in atmosphere/ocean models
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P. Smolarkiewicz ’
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Atmospheric basics and atmosphere balances- J. Tribbia
Hamiltonian geophysical fluid dynamics - - Ted Shepherd
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R. Samelson '
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Abstract

It is known, but not widely appreciated, that several fundamental vorticity theorems
of fluid mechanics may be conveniently and naturally expressed using differential forms. The
intent of this pedagogical note is to provide a concise, self-contained, accessible introduction

to this appealing formulation of the classical theorems.
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1 Introduction

The calculus of differential forms (Spivak, 1965) is useful for the study of geometric and topo-
logical invariants of smooth transformations. In fluid mechanics, the intrinsically kinematic or
“transformation-geometric” aspects of vorticity dynamics have long been recognized (Truesdell,
1954), but the use of differential forms has been limited. The purpose of this brief pedagogical
note is to illustrate how several classical vorticity theorems can be conveniently and naturally
expressed in terms of differential forms. In spirit, the presentation might be seen to follow,
for example, Burke’s (1985) text on differential geometry for applied physicists. None of the
resuits are new, but we hope that this introduction will help to make this elegant and appeal-
ing formulation of the classical theorems accessible to a wider community. We make use of a
Hamiltonian formulation of the fluid equations that is less abstract than that of Holm et al.
(2002), and similar, for example, to those of Salmon (1998) and Shepherd (1990). Except for
the use of differential forms, the present derivation of the conservation laws from symmetries
of the Lagrangian largely follows Salmon (1998). A related treatment, which includes some
additional mathematical ideas and notation but omits mention of the potential vorticity (a

property of particular importance in geophysical fluid dynamics), appears in Abraham et al.
(1983).
2 Fluid motion
Let the fluid motion be defined by the map
z=X(a,71), X(a,0) =0, (2.1)

where X = (X1, X, X3) is the location at time 7 of the fluid element initially at = = a, and

a = (aj, ag, a3) is the Lagrangian label. The inverse map
a= Az, 1), A(z,0)=g, (2.2)

gives the Lagrangian label of the fluid element at 2 at time 7. The velocity of the fluid element
initially at z = a is

u(a,) = o X(a,), (23)
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and the velocity of the fluid element at z at time Tt =t is
v(z, t) = u[A(z,t), 1] (2.4)

Similarly, u(a,7) = v[X(a,7),7]. Let o be the Jacobian determinant of the motion,

_ AX)
O]

0X;

It is convenient to choose the Lagrangian coordinates e so that equal volumes in a-space
correspond to equal masses of fluid. Then conservation of mass for any moving volume R(?)

of fluid means that the integral of the density p over R(t) is constant,

dx, = ,tdﬂ:,,.:f X (a,7), 7] @ d%, 2.6
Joy e = [ @080 = [ plX (a7, 7] (26)

so the density p = 1/, and a will be the specific volume.

3 C(Circulation and Stokes’ theorem

The circulation

= ,8) - d 3.1
SECLRE (31)

is the (clockwise-oriented) line integral at time ¢ of the fluid velocity around the closed curve

C(t). With the definition of the 1-form
V(z,t) = v(z,t) - dz = v1(z, t) dz1 + va(z, t) dzo + vs(z, t) dzs, (3.2)

the circulation may be written
T'(t) = Vi(z,t). 3.3
(t) j& ® (z,t) (3.3)

The exterior derivative dV of V is

dug 0w dvs  Bup S, Ovs
&V ={—=--— .= _— - )
(6:;:1 3$2) dzy Adzs + (33:2 6$3) dzg A dzg + (6:::3 8m1) drs Adzy, (3.4)

or, in terms of the components of the vorticity w = Vi X v,
dV = w3 dzy Adzoy + wi dzo Adzsy + wo dzg A dxy. (3.5}

Here and below, we regard 7 and ¢ as parameters, and compute exterior derivatives only with

regard to the spatial coordinates a and z; we assume also that all functions are sufficiently
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smooth that the derivatives make sense. The wedge products dz; A dzj, 2,7 = 1,2,3, in (3.4)
and (3.5) are differential 2-forms that correspond to the area elements dz; dz; in the standard
notation of ordinary multi-variate calculus.

Stokes’ theorem (e.g, Spivak, 1965) then implies

de: v, (3.6)
s C(®)

where the surface S is bounded by the closed curve C(2).

4 The pull-back

The fluid motion may be inverted to express the circulation as an integral in a-space, using

the chain rule to write dz; = V, X; - da, j = 1,2, 3. This yields

rr)=¢ U, 41
)=, Vi) (@)
where now the 1-form U(a, ) is
Ula,7) = &-da (4.2)
= ufa,T)- Md L+ ufa, T) - aX(”“ 7) dag + ula,7) - %da} (4.3)
as 3

In the notation and language of differential forms, U = X*V, and U is the “pull-back” of V
to ¢ under the map X. If 7 =0, X is the identity map, 8X;/8a; = §;;, and U = V. Similarly,

the volume elements df), and d2, in (2.6) are differential 3-forms,

dQl, = dz) A dzy A dxs, dfl; = day A dag A das, (4.4)
and these satisfy X*(d2;) = ad(2,. These differential 3-forms correspond to the volume ele-
ments dz; dza dzs and da; dag dag in the standard notation of ordinary multi-variate calculus.
5 Potential vorticity: the parcel-exchange symmetry

For adiabatic (0n/87 = 0) motion of a thermodynamic fluid with internal energy E a function

of entropy 1 and density p = 1/«, the action integral of Hamilton’s principle may be written

T2
£=f L%(u, E, ¢, 7, X) dr, (5.1)
T1
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where
1
La(u1 E1 qb: R X) = f{gug(a: T) - E[Ot(X, ﬂ);ﬂ(a)] - ¢(X)} d‘Qﬂ' (52)
Here ¢ is the potential for the external force per unit mass, and the integral is over the entire

volume of fluid.

Transforming L® to z-space, we have L® = L*, where

(0, B ,1,4) = [(39%(e,0) - Blate, A) ()] - d@)a™ dfle. (53

For fixed v, E, ¢, 7, consider an infinitesimal re-arrangement of the initial fluid elements, A —
A’ = A+ s€, where s is a scalar. The first variation of L* under this parcel-exchange operation
is

dL" - £ = 31_11% %[LI(U,E, &, A+ s€)— L¥(v, E, ¢,m, A)}. (5.4)

If A — A’ is volume-preserving, so that

Va-£=0, (5.5)

then
.1 ; _ . 17o(A) N\ _ _
lim ~(a(z, 4) - a(z, 4)) = a{z, 4) li - (—3@ ) o AV, £=0,  (5.6)
and if A — A’ is also adiabatic, so that
Ve -€=0, (5.7)
then
LT -£=0. (5.8)

That is, the Lagrangian L® is invariant under an arbitrary, infinitesimal, volume-preserving,
adiabatic, parcel-exchange transformation A — 4’
Now, for £, compute the terms in the variation of the action integral (5.1). After an

integration by parts over T on the first term in the integrand, the result may be written

T2 T2
s¢=[[uwgan]” - [7 [ dnr, (5.9)
n T1
where
du 8E
5_ §+avzp+v:c¢a p__aa (510)
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and &' is the variation in X(A,7) induced by the transformation 4 — A’, with components
§; = VoX;-§ 7 =1,2,3. Then (Noether’s theorem), since 6L -£§ = [0L* - £dt = 0 (the

parcel-exchange symmetry), and since £ = 0 for a fluid motion (that is, for a solution of the

( / " g’dﬂa) (r=m)= ( f u- E’dﬂa) (r=m1). (5.11)

Since 1 and Ty are arbitrary, and since u- &' =4 - &, it follows that

:T ( [ i £dO, ) (5.12)

The conditions (5.5) and (5.7) are satisfied if

Euler equations),

£(a) = Vo x (AVan) = Vah x Va1, (5.13)

where h is an arbitrary scalar function of a. Substitution of (5.13) in (5.12), integration by

parts over a-space, and the observation that A is arbitrary yields

P
=0, (5.14)

where the differential 3-form II is given by
Il = Pda; Adap Adag = dU Adn = d(U A dn) = —d(ndl), (5.15)

with P(a) = Vo x 4 - Van = Vo - (& x Van) = Vo - (0V, x 4). In (5.15), dU is the exterior

derivative of U,

Oty Ol Ois Oy Ot  Ois
du = (aal 80‘,2) davl A da2 + (5‘&;‘ - 8_0,3) da.z A da3 + (3_03- - —8?1) dﬂ.3 A dﬂ.]_, (516)

and dn = Vg7 - da. The equation (5.14) expresses the material conservation of isentropic

potential vorticity P(a). Since d(X*V) = X*dV, it follows that
I{0) =1I(7) = X*dV Adn

3
9
= X*dVAX* (E -B—E-dl'k)
Bn
= (Z dV A gdi'k)

k=1

) 8
= X (Z wk—é-;]—kdml A dzg A 49:3)

k=1

= Z wi[X (e, 7), T] adal A dag A das. (5.17)
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Thus, the materially conserved potential vorticity in xz-space is -
w
Q(z,t) = > Ve, (5.18)

The last expression in (5.15) immediately gives the following surprising result (Haynes and
McIntyre, 1990): the integral of IT over an a-volume (or the integral of p@ over an z-volume)
bounded by two isentropic surfaces .S; and .9 that each surround the entire globe is exactly

Zero.

6 Vorticity theorems for a homentropic fluid

Suppose the fluid is homentropic, that is, has uniform entropy. Then the parcel-exchange
symmetry yields a potential vorticity conservation law for each independent Lagrangian label
a;, 7 =1,2,3, and, by (5.14}, each component of V, x i is materially conserved. Using (5.16),

this general vorticity conservation law (Lamb, 1932, p. 204) may be written in our notation
i(ci!U) =0 (6.1)
or e '
Two fundamental results that follow in this case are Kelvin's circulation theorem,
4 ) =0 (6.2)
dr 7 ’

and Cauchy’s integral of the vorticity equation,

w(X(e,7),7)

> = (w(a,0) - Vg)X(a,T). (6.3)

For Kelvin’s circulation theorem, we have

d d
“r - £ =
dr dr f(;'(t:ﬂ Viz,t =)
= i Ula,7)
dr Je() ’

d
= E_‘fﬂo dU(G,T)

fRO % dU(a, ™) =0, (6.4)

where Ry is any surface in a-space bounded by C(0).
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For Cauchy’s vorticity theorem, we have (since also da;/0r =0,  =1,2,3)

L:Jj(a., O)dal AdagANdas = dUA daj
= X*dV(z,t=171)Ada;
8A
= X*dVAX* (Z o :da:k)
3, 94
= X* Zwk—Jd&:l Adra A dzy
= Ok
3 a
= ) wi[X(a,7), 'r]%adal A dag A dag. (6.5)
k=1 O,
Thus,
M Vi A; = wja,0). (6.6)
Since
0A; an
Z “ Oz, c'3a.J 71 (6.7)

(6.3) follows.
From (6.1) and the Poincaré lemma, it follows upon exchanging the order of differenti-

ation in (6.1) that in a simply-connected region R(0),

)
5-U =dF, (6.8)

for some function F(a,7). Then

i vowdl, = i Vadv
1 JR(z) dt JR(z)
= 4 UndU
dr JR(0)

- f (aU)AdU+ U/\(adU)
R(0) \OT R(0) ar

= dF AdU
R(0)

= d(F A dU)
R(0)

= FdU
5(0)

= Fdv, 6.9
s (6.9)
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where the surface S(t) is the boundary of the volume R(¢). If S(¢) is everywhere tangent to
the vorticity w, then dV' = 0 on S(t), and the integral of the helicity v-w over R(t) is conserved
following the motion. For a fluid motion, £ = 0 in (5.10), and from (6.8) and (4.2) it follows

that (up to an arbitrary constant) F' is the Bernoulli function,

Fla, 1) = ~ -/a &difig&) do— ¢ -+ %(u - u) + const. (6.10)

The standard derivation of the vorticity theorems amounts essentially to rewriting the equa-
tions of motion £ = 0 in terms of F' first, and then obtaining (6.1) from the exterior derivative

of (6.8).
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