Eulerian and Lagrangian means and Stokes drift - RMS 15 Nov 2023

For surface waves, Phillips (1977) shows that:

1. The depth-integrated Eulerian and Lagrangian mean momenta are equal (Phillips, 1977, p. 44);
2. The only contribution to the Eulerian-mean wave momentum arises from regions of space above the wave troughs (Phillips, 1977, p. 40).

It is straightforward to verify and illustrate these general results for the case of a linear sinusoidal deep-water wave.

Following Section 3.2 of Phillips (1977), let the free-surface displacement $z=\zeta(x, t)$ of an infinitesimal (linear) wave be:

$$
\begin{equation*}
\zeta(x, t)=a \cos (k x-\sigma t) \tag{0.1}
\end{equation*}
$$

with the x-axis oriented in the direction of propagation of the wave and the mean free surface at $z=0$. The horizontal velocity in the x-direction is:

$$
\begin{equation*}
u(x, z, t)=\sigma a e^{k z} \cos (k x-\sigma t) . \tag{0.2}
\end{equation*}
$$

The classical Lagrangian-mean motion (Stokes drift) for this wave can be computed by integrating the equations for parcel motion in the two-dimensional velocity field (e.g., Phillips, 1977, Section 3.3). The result, to leading order in $k a$, is:

$$
\begin{equation*}
u_{S}(z)=\sigma k a^{2} e^{2 k z}, \quad z \leq 0 \tag{0.3}
\end{equation*}
$$

where z can be regarded either as the mean depth of the parcel or as the initial position of a parcel at the nodal points $x_{n}=\pi / 2+n \pi$, where $\zeta\left(x_{n}, t=0\right)=0$ (Fig. 1 ; blue line). The vertical integral of this mean parcel motion gives the depth-integrated mean Lagrangian momentum:

$$
\begin{equation*}
U_{S}=\int_{-\infty}^{0} u_{S}(z) d z=\sigma k a^{2} \int_{-\infty}^{0} e^{2 k z} d z=\frac{1}{2} \sigma a^{2} . \tag{0.4}
\end{equation*}
$$

That the parcel-following Lagrangian-mean calculation gives the correct depthintegrated wave momentum can be checked by computing the Eulerian mean, which requires only averaging the horizontal velocity field; it is easily seen that the mean vertical velocity vanishes. This Eulerian mean (over x at $t=0$, for simplicity) is:

$$
\begin{equation*}
u_{E}(z)=\frac{k}{2 \pi} \int_{-\pi / k}^{\pi / k} u(x, z, t=0) d x \tag{0.5}
\end{equation*}
$$

For $z<-a$ (below the wave troughs):

$$
\begin{equation*}
u_{E}(z<-a)=\frac{k \sigma a}{2 \pi} e^{k z} \int_{-\pi / k}^{\pi / k} \cos k x d x=\left.\frac{\sigma a}{2 \pi} e^{k z} \sin k x\right|_{-\pi / k} ^{\pi / k}=0 \tag{0.6}
\end{equation*}
$$

For $|z|<a$ (above the wave troughs):

$$
\begin{align*}
u_{E}(|z|<a) & =\frac{k \sigma a}{2 \pi} e^{k z} \int_{-\arccos (z / a) / k}^{\arccos (z / a) / k} \cos k x d x \\
& =\left.\frac{\sigma a}{2 \pi} e^{k z} \sin k x\right|_{-\arccos (z / a) / k} ^{\arccos / k} \\
& =\frac{\sigma a}{\pi}\left[1-(z / a)^{2}\right]^{1 / 2}, \tag{0.7}
\end{align*}
$$

where $e^{k} z=1+\mathscr{O}(k a) \approx 1$ has been used (Fig. 1; green line). This illustrates point \#2 above.

The vertical integral of this Eulerian mean is:

$$
\begin{align*}
U_{E} & =\int_{-\infty}^{a} u_{E}(z) d z \\
& =\frac{\sigma a^{2}}{\pi} \int_{-1}^{1}\left[1-(z / a)^{2}\right]^{1 / 2} d(z / a) \\
& =\frac{\sigma a^{2}}{\pi} \int_{-1}^{1} \cos \theta d(\sin \theta) \\
& =\frac{\sigma a^{2}}{\pi} \int_{-\pi / 2}^{\pi / 2} \cos ^{2} \theta d \theta \\
& =\frac{1}{2} \sigma a^{2} . \tag{0.8}
\end{align*}
$$

This shows that $U_{S}=U_{E}$, confirming the accuracy of the Lagrangian-mean calculation of the depth-integrated mean wave momentum, and illustrates point \#1 above.

Phillips, O. M., 1977. The dynamics of the upper ocean. 2nd ed., Cambridge Press, 270 pp. Samelson, R. M., 2022. J. Phys. Oceanogr., 52, 1945-1967. doi: 10.1175/JPO-D-22-0017.1.

List of Figures

1 Dimensionless wavelength-averaged Eulerian horizontal velocity (green) and Lagrangian Stokes drift (blue) vs. dimensionless depth for a linear sinusoidal surface-gravity wave with free-surface displacement $\zeta=a \cos (k x-\sigma t)$ for $k a=0.03$. The vertical integrals of the two profiles are equal. The Stokesdrift profile can also be obtained as a spatial mean of the Eulerian velocity by computing a mass-weighted average on surfaces of constant pseudo-vertical, surface-conforming, orthogonal curvilinear coordinate, as shown in Samelson (2022).

Figure 1: Dimensionless wavelength-averaged Eulerian horizontal velocity (green) and Lagrangian Stokes drift (blue) vs. dimensionless depth for a linear sinusoidal surface-gravity wave with free-surface displacement $\zeta=a \cos (k x-\sigma t)$ for $k a=0.03$. The vertical integrals of the two profiles are equal. The Stokes-drift profile can also be obtained as a spatial mean of the Eulerian velocity by computing a mass-weighted average on surfaces of constant pseudovertical, surface-conforming, orthogonal curvilinear coordinate, as shown in Samelson (2022).

