

Treating the Harmful Cyanobacteria Bloom (HCB) at Ross Island lagoon

Desiree Tullos, PhD, PE (OR)

HCB impacts to fish

Studies have demonstrated reduced survival of salmon during blooms.

Fraser river sockeye salmon marine survival decline and harmful blooms of *Heterosigma* akashiwo

J.E. Jack Rensel ^a $\stackrel{\triangle}{\sim}$ Micola Haigh ^b, Tim J. Tynan ^c

Marine survival of juvenile sockeye salmon: 2.7% in years coinciding with major blooms versus 10.9% in no or minor bloom index years.

Mechanisms:

- Low dissolved oxygen
- High pH
- Acute toxicity
- Preferred food replaced by cyanos

HCB impacts to fish

Studies have demonstrated reduced survival of salmon during blooms.

Fraser river sockeye salmon marine survival decline and harmful blooms of *Heterosigma* akashiwo

J.E. Jack Rensel a $\stackrel{\triangle}{\sim}$ $\stackrel{\square}{\sim}$, Nicola Haigh b , Tim J. Tynan c

Marine survival of juvenile sockeye salmon: 2.7% in years coinciding with major blooms versus 10.9% in no or minor bloom index years.

Mechanisms:

- Low dissolved oxygen
- High pH
- Acute toxicity
- Preferred food replaced by cyanos

So how do we solve this problem??

Step 1: Learn about lagoon

The lagoon was a data desert.

Develop baseline understanding of hydrodynamics and ecosystem.

Temp (°C)

Rehabilitation of **Ross Island** Lagoon

Overcoming a Harmful Cyanobacterial Bloom (HCB) in the Heart of Portland, Oregon

Desirée Tullos & Rowan Fay & Willie Levenson

Stratification – hot top, cold bottom

Adequate nutrients in the river to feed bloom

Tidally- (and wind) driven hydrodynamics

Q Search places

So how do we solve this problem??

Step 2: Evaluate MANY options

Stagnant water

Hot water (>16C)

3. Mixing up cold water

Excess nutrients

4. Phosphorus immobilization

Phosphorus treatment only

* toxicity concern pH concern Most promising alternative: Restore flushing flows to lagoon

- Most effective
- Non-structural
- Least maintenance
- Least carbon/energy for operations

Flushing channel design in progress

- **Stable channel**: Engineered material designed to be stable up to a design flow (e.g. 1% exceedance)
- Fish passage: Meets fish passage criteria at high and low flows
- Entrance/exit: Careful design needed at transitions into/out of channel
- Unique design elements: Difference will be in channel slope and bidirectional flow

Cyanobacteria

 No Channel (top)

• ~2m Channel (bottom left)

• ~10 m Channel (bottom right)

Summary

- RIL is not a lake and not a river.
 - Deep stratified middle (like a lake)
 - Shallow, mixed margins (like a river)
- Tradeoffs among the different strategies cost, permitting difficulty, energy demands/carbon footprint, O&M, fish access
- Ongoing work
 - Advancing design details and cost engineering

desiree.tullos@oregonstate.edu

Alternative: Pump cold water to the surface

Does it work? Yes, but energy demands are high.

Alternative: Bubble curtain to mix the lagoon

Does it work?

Source: Kaeser Compressors 2022

