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ABSTRACT
The scientific community has recently come to appreciate that, rather than existing as independent
organisms, multicellular hosts and their microbiota comprise a complex evolving superorganism or
metaorganism, termed a holobiont. This point of view leads to a re-evaluation of our understanding
of different physiological processes and diseases. In this paper we focus on experimental and
computational approaches which, when combined in one study, allowed us to dissect mechanisms
(traditionally named host-microbiota interactions) regulating holobiont physiology. Specifically, we
discuss several approaches for microbiota perturbation, such as use of antibiotics and germ-free
animals, including advantages and potential caveats of their usage. We briefly review
computational approaches to characterize the microbiota and, more importantly, methods to infer
specific components of microbiota (such as microbes or their genes) affecting host functions. One
such approach called transkingdom network analysis has been recently developed and applied in
our study.1 Finally, we also discuss common methods used to validate the computational
predictions of host-microbiota interactions using in vitro and in vivo experimental systems.
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Introduction

In addition to our own cells and genomes, humans are
hosts to a vast community of microbes. This micro-
biota are not neutral neighbors, rather they are indis-
pensable contributors to host physiology, acting in a
symbiotic relationship with the host. The concept that
we are holobionts, being comprised of hologenomes
(our genomes and our microbial genomes) with com-
plex interactions between our cells and our microbes,
has been discussed for many years.2-9 More recently,
the development of new tools to interrogate these holo-
genomic interactions has greatly expanded our ability
to understand and define ourselves in terms of both
our own human genome and that of our resident
microbial partners.10 The holobiont view helps to
explain the dramatic increase in the number of chronic
inflammatory and autoimmune diseases with signifi-
cant genetic component which occurred too rapidly to
be attributed to the host genome alone.11,12 In contrast,
our microbial genomes have a tremendous capacity for
rapid adaptations which can influence health and dis-
ease.13 Therefore, in order to better understand the

basis of many modern diseases a deeper insight into
our interactions with our microbes is required.

Perturbing the microbiota: germ-free and
antibiotic-treated mice

Microbiota contribution to specific host phenotypes,
including diseases, is frequently determined through
broad perturbation of the microbial community
(Fig. 1). One extreme, but common method of micro-
biota perturbation is generation of animals, most com-
monly mice,14 devoid of microbes (i.e. germfree or
axenic). Axenic and gnotobiotic insect and zebrafish
models can also be informative in understanding fun-
damentals of host-microbe interactions;15-20 however,
the mouse is the most widely used and powerful tool
for understanding the connections between micro-
biota and disease.14,15 Study of germ free versus con-
ventional organisms has revealed myriad roles for
microbiota in host immunity and metabolism, among
many other systems. For example, it has been long
known that in the absence of microbiota, development
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of various immune cells is impaired and the ability to
respond to infections is reduced.21,22 Germ free mice
have also revealed that microbiota have profound
influence on metabolism, for example, regulating bile
acids pools23 and worsening glucose tolerance.24 Fur-
thermore, it has been shown that the gut microbiota
can mediate molecular cross-talk between host
immune and metabolic functions.25,26 Additionally,
derivation of specific genetically modified mouse

models under germ free conditions has been used to
investigate gene-specific interactions between host
and microbiota.27 Although gnotobiotic technologies
for germfree animals have existed since the 1950s,28

our ability to derive and work with germ-free mice is
still a limiting factor for investigation. Therefore, an
economically more feasible approach was introduced -
using antibiotic treatments to alter microbiota compo-
sition ideally to the point of eliminating nearly all

Figure 1. An approach to predict and test for members of microbiota affecting specific host functions using transkingdom network
analysis.
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microbes with cocktails of antibiotics. One protocol
using a cocktail of 4 antibiotics for 4–5 weeks has been
exceptionally popular among investigators and
allowed to demonstrate the involvement of microbiota
in host functions and disease pathogenesis in a variety
of models.29-32 Furthermore, a few studies compared
both germfree and antibiotic-treated animals and
detected concordant results.31,33 However, concordant
results are not always observed between these 2
models. For example, in an animal model of common
variable immunodeficiency (CVID) associated enter-
opathy (in B lymphocyte deficient mice), we found
that derivation of B cell knockout (BcKO) and control
mice as germfree abolished differences in the host
phenotype between the 2 genotypes observed in con-
ventional mice (Fig. 2A).25 This result demonstrated
the essential role of microbiota in BcKO phenotype.
However, the antibiotics cocktail protocol that has
successfully mimicked germfree mice in other studies
did not revert host alterations in the intestine of B cell
deficient mice (Fig. 2B).

Intrigued by this difference between germfree and
antibiotic-treated mice, we sought to comprehensively
evaluate the effects of antibiotics on the intestine. Sur-
prisingly, we found that only about one third of gene

expression changes in the gut of antibiotic-treated
mice could be attributed to the depletion of normal
microbiota verified by comparison to germfree mice.1

This effect was primarily manifested by decreased
expression of genes related to many aspects of innate
and adaptive immunity. Interestingly, antibiotics had
much more pronounced effect on T cell numbers than
on IgA-producing cells.1 This may be one of the rea-
sons for the discrepancy between germfree and antibi-
otic-treated BcKO mice (Fig. 2) as their phenotype
was IgA-dependent.25 An additional, non-mutually
exclusive, explanation is that microbiota members
insensitive to antibiotics (such as viruses) are respon-
sible for alterations in intestines of B cell deficient
mice. Indeed, this hypothesis is supported by other
studies demonstrating outgrowth of diverse viruses in
immunodeficient animals.34,35

Thus, since each type of microbiota perturbation
presents some drawbacks, the selection of appropriate
models and interpretation of results must be per-
formed with consideration to the potential of model-
specific effects. The results of our study that evaluated
global intestinal transcriptome after treatment with
antibiotics cocktail can aid in these decisions by pro-
viding a thorough characterization of changes in host

Figure 2. Different effects of the absence of microbiota (A) and of antibiotics (B) on the B cell knockout (BcKO) gene expression pheno-
type in the intestine. Each dot on graphs represents ratios of gene expression between BcKO and control mice from BcKO signature
(Shulzhenko & Morgun et al., 2011). Similarity between gene expression alterations induced by B cell deficiency in conventional and
germ-free (A) or conventional and antibiotic-treated (B) mice is estimated using correlation analysis and represented on the graphs.
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gene expression that can be specifically attributed to 3
factors, namely, the lack of microbiota, the effect of
antibiotics-resistant microbes, and direct effects of
antibiotics.1

Microbiota characterization

Broad perturbations of microbial communities dis-
cussed above can provide evidence of causal roles of
microbiota in host phenotypes. However, these experi-
ments have to be followed by several questions to pin-
point the exact mechanisms: What microbes live in
the particular host? Which of them are responsible for
control of specific host phenotypes? What molecular
mechanisms do microbiota use to influence the host?
Advances in sequencing technologies over the past
decade have greatly enhanced our ability to answer
some of these questions. Herein, we briefly described
culture-free methods, leaving out cultivation
approaches reviewed elsewhere (Fig. 1).36,37

One approach to identify the taxonomic profile of a
microbial community is with 16S rRNA amplicon
sequencing, in which highly variable regions of 16S
ribosomal rRNA from all microbes in a sample are
amplified by PCR and subject to high throughput
sequencing38 or hybridization to probes on a special
microarray chip called Phylochip.1,39 In the case of
sequencing, relative abundances of taxa are calculated
from copy number of amplicons from the correspond-
ing taxa. Abundance profiles for different taxonomic
ranks are commonly generated (i.e., strain, species,
genus, family etc.) and then can be used for further
analyses.40 Taxonomic composition 16S amplicon
sequencing can be also used to predict functional vari-
ables such as KEGG gene/pathway.41 In this case, gene
composition of detected taxa is predicted from phylo-
genetic relationship of taxa with known annotated ref-
erence genome.

An alternative and/or complementary approach to
identification of taxonomic composition by 16S is
shotgun metagenomics sequencing, in which the
whole genomes of all microbes (microbiome) in the
sample are sequenced. With this method, gene/func-
tion abundance can be directly derived from shotgun
metagenomics sequencing by assigning reads to pro-
tein sequence or protein families that have functional
annotation in KEGG, SEED and COG database.42,43

This method can be very informative, as it could be
not a single species that affects host phenotypes, but

a bacterial function present across multiple species.
In this case, the same function carried out by similar
genes from different species is investigated as a single
variable, providing potential molecular mechanisms
regardless of taxonomy information. In addition,
genome sequence reads can be compared to reference
genomes in order to be assigned to specific taxa.
Then the number of reads assigned to each taxon
can be normalized to adjust for genome size and
sequencing depth and generate abundance profiles
for microbes.44

Systems approaches to infer microbial
contributors to host physiology

Thanks to new sequencing technologies and new cul-
turing techniques, we have made big advances in
characterization of microbiota. Currently, the key
challenge in the field is a transition from merely
observational or descriptive studies to inference and
testing of causal relationships between specific
microbes and host biology. In other words, identifica-
tion which specific taxa and/or bacterial functions are
actually responsible for control of specific host func-
tion is now an area of active investigation. One
recently proposed approach to this question is to sys-
tematically test libraries of randomly selected
microbes through large scale colonization of germ
free mice employed by Faith et al.45 Although the
approach uses an analytical method that infers
microbes specifically affecting host phenotype, this
strategy is still highly labor and resource intensive,
thus limiting its utilization to centers that have large
gnotobiotic facilities.

Therefore, a more desirable approach would be to
first computationally predict the most likely important
players or causal factors (microbes and/or microbial
genes) among hundreds of measured variables and
then to experimentally test the most promising candi-
dates. This type of question is not unique to the field
of holobiont biology. For instance, cancer researchers
have been facing a similar problem attempting identify
driver mutations responsible for progression of
tumors. Application of novel systems approaches to
genomic and transcriptomic data from tumors has
recently offered an efficient solution to infer a short
list of candidate drivers. Indeed, reconstruction and
analysis of gene regulatory networks has proven to be
an excellent tool for causal inference, allowing
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researchers to uncover gene-drivers of carcinogenesis
of different tumors.46-48 Moreover, these networks can
be built from different types of variables using a vari-
ety of available tools49 as long as all parameters are all
measured in the same sample.

In our work studying the effect of antibiotics on
intestine by colonizing germ-free mice with antibiotic-
resistant microbiota, we demonstrated that these
microbes had profound effect on intestinal transcrip-
tome, in particular, decreasing expression of mito-
chondria and proliferation related genes.1 Indeed, we
have faced the common problem that there is evidence
of a microbiota effect on a host phenotype, but it was
unclear which microbe was responsible. Building on
our previous experience with gene networks,25,48,50 we
developed a new approach that models host-micro-
biota interaction that we called transkingdom net-
work.1,49 To build this model, microbial gene
abundances and mouse transcriptome data were inte-
grated into one network. Interrogating the microbial
part of this network revealed 2 unexpected microbes
(Pseudomonas aeruginosa and Escherichia coli) as can-
didates to drive mitochondrial depression and cell
death in epithelium. Although these microbes are
minor players in the healthy mouse microbiota, they
are resistant to many antibiotics1 and therefore antibi-
otic ablation of the microbiota provides them with a
prime opportunity to interact with the host. Further-
more, in order to use this network to infer which bac-
terial genes are responsible for microbiota effect on
host, we adapted a specific topological metric, called

betweenness centrality (Fig. 3). Instead of using stan-
dard betweenness centrality we employed the bipartite
betweenness centrality. Although bipartite between-
ness centrality had been originally proposed for
human communication studies,51 our work provides
first evidence that this topological metric can be useful
to investigate biological networks and interrogate
transkingdom communications. This approach
allowed us to search for microbial genes that would
represent “bottleneck” nodes in communication
between microbiota and host. Among top predicted
genes we found LasR, a well-known transcription fac-
tor of P. aeruginosa responsible for regulation of quo-
rum sensing and secretion of virulence factors by this
microbe. Importantly, we could experimentally vali-
date not only the effect of P. aeruginosa on mamma-
lian cells, but also the key role of LasR in this process.
It is important to note, that while in this study we
have used bacterial gene copy-number data, bipartite
betweenness centrality can also be applied to taxo-
nomic abundances derived from 16S sequencing
(unpublished data). Thus, the reconstruction and
interrogation of transkingdom network represents a
promising approach for inference of causal players of
host-microbiota interaction and it is the first one used
to infer not only specific taxa, but also specific bacte-
rial genes responsible for the effect of microbe on spe-
cific host phenotype.

Other tools have been also recently developed
attempting to connect microbiome data with host phe-
notype.52-58 Although most of them do not go beyond
simple association tests, 2 approaches should be specif-
ically mentioned as similarly to our method they
attempt to pinpoint microbes that have potential causal
effect on unrelated phenotype.52,59 The first one, LEfSe,
is a popular tool that has been already utilized by sev-
eral groups.60-62 More importantly a few studies went
beyond analyses and successfully validated computa-
tional predictions of this approach. For example, LEfSe
has been applied on 16S and shotgun metagenomics
data to identify Prevotella copri to be related to Rheu-
matoid arthritis and experimentally proved to be able
to increase inflammatory response in the gut.61 The
other approach,59 although it does not have specific
tool, relies on extended generalized Lotka–Volterra
dynamics on time series metagenomics data analysis. It
was successfully applied to predict bacteria that would
efficiently compete with C. difficile.57 Importantly, in
this case the researchers could also confirm that all 3

Figure 3. Bipartite betweenness centrality in transkingdom net-
work. Microbial genes (circle nodes) and host genes (triangle
nodes). Bi-partite betweenness centrality is calculated for each
microbial gene based on the number of times it is present in the
shortest paths connecting microbial genes and human genes
(Dong et al., 2015). Microbial genes with high bipartite between-
ness centrality (red) are more likely to be key regulators of host
gene expression than genes with small values of bipartite
betweenness centrality (blue).
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microbes predicted could out-compete C. difficile in
mouse colonization experiments.

Validating predictions: microbiota transplants
and in vitro testing

Similar to other fields of biology, the results of compu-
tational inferences of host microbiota interactions are
much more valuable if confirmed by ‘wet-lab’ experi-
ments (Fig. 1). Given our primary focus here in deter-
mining how microbes affect host biology, approaches
taken in validation are reminiscent of widely used
infection models using commensal microbes instead
of pathogens. However, whereas in the infection mod-
els such microbes are normally absent in healthy
hosts, commensal microorganisms can be present in
normal microbiota. Therefore, monocolonization of
germfree mice with a microbe of interest is seemingly
the most straightforward solution to circumvent this
problem and is still widely employed in experimental
studies.63-66 Though it might look to be the “cleanest”
way, concerns arise about the environment into which
the selected microbes are introduced. For example,
germfree mice have an undeveloped immune system
and altered metabolism that could influence behavior
of the tested species. Additionally, a given bacterium
in monoassociation might not behave in the same way
as it would in a community and might not induce
same immune responses.45,67-69 For example, bacteria
comprising a standard mix (Altered Schaedler Flora)
were insufficient to induce colonic T regulatory cells
in germfree mice when used individually.67 In another
study, a common mouse pathogen Citrobacter roden-
tium did not trigger colitis when it was administered
alone in contrast to when it was given in the presence
of another bacterium.70 Another recently proposed
approach would be to use “standardised” microbial
communities14 which can be then supplemented with
the microbe of interest. In addition, aforementioned
antibiotic-treated mice can serve as another type of
host. There are recent examples in the literature utiliz-
ing one of these or a combination of approaches to
validate their predictions. For example, Iida and Dzut-
sev et al. predicted Alistipes shahii as a bacterium
affecting the host’s ability to respond to chemother-
apy.71 To test this, antibiotic-treated mice that other-
wise have poor response were given A. shahii, which
improved response by inducing expression of inflam-
matory cytokines.71 In another study, the genus

Sutterella was identified by LEfSe to be associated with
low fecal IgA levels.62 This prediction was tested not
by monocolonization, but by administration of an
enriched culture of Sutterella to mice, which converted
high fecal IgA mice to a low IgA phenotype.62

Finally, besides validation of effects of microbes
predicted from animal models, there is a growing
need for validating predictions generated from analy-
ses of human microbiota associated with disease
states. Therefore, humanized gnotobiotic mice (i.e.
germfree mice colonized with human microbiota)
have become a popular experimental system.72 Despite
some concerns that this system does not fully recapit-
ulate the effects human microbiota on immune sys-
tem,73 some effects of microbiota on metabolism
could be confirmed in humanized mice.72,74-76

Classical in vitro approaches can be also used for
evaluation the effects of microbes on host cells
(Fig. 1). This strategy has been very useful for investi-
gation of effects of pathogens77 and probiotics.78-81

Furthermore, if candidates are not just particular bac-
teria but specific bacterial genes, genetically modified
microbes have to be tested alongside with wild-type
bacteria, as was done in our study on the effects of
antibiotics and antibiotic-insensitive bacteria on intes-
tinal phenotypes.1 In this study, besides identifying P.
aeruginosa as a candidate microbe as a regulator of a
specific host phenotype (mitochondrial depression
and cell death), we also identified LasR as a likely bac-
terial gene regulator of this phenotype. We anticipated
that, as LasR is a primary regulator of quorum sensing,
soluble factors secreted by bacteria should play in the
effect on host. To validate these predictions we treated
an intestinal cell line with wild-type and knockout P.
aeruginosa conditioned growth medium. Indeed, our
analytical predictions were confirmed as medium
from wild type bacterium led to mitochondrial repres-
sion and cell death, while LasR-deficient bacteria were
unable to produce this effect.1

In conclusion, the field of host-microbiota interac-
tions is rapidly transforming into a new discipline
bringing biology and medicine into new era. While
hologenome theory makes peace between Darwin’s
evolution and Lamarck’s theory of Inheritance of
acquired characteristics, new systems biology
approaches armed with metagenomics and gnotobi-
otic techniques revolutionize our understanding of
health and disease. Transkingdom networks put in
practice the ‘hologenome theory of evolution’ by
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offering a robust framework for interrogation of hosts
and their microbes as a whole. The insights from these
networks provide a unique understanding of cellular
and molecular mechanisms that govern social affairs
between macro- and micro-species that altogether
make up a holobiont.
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